
Roberts: Reconfigurable Platform for Benchmarking
Real-time Systems

Thomas C.P. Chau, Wayne Luk
Department of Computing

Imperial College London, UK
{c.chau10, w.luk}@imperial.ac.uk

Peter Y.K. Cheung
Department of Electrical and Electronic Engineering

Imperial College London, UK
p.cheung@imperial.ac.uk

ABSTRACT
This paper presents Roberts, a Reconfigurable platfOrm for
BEnchmarking Real-Time Systems. Roberts is the first plat-
form which can be customised for a given system-under-test
to support benchmarking of real-time properties and energy
consumption. The benchmarking takes into account system
workload and environmental events, with facilities for gener-
ating test vectors conforming to the specification of system-
under-test, and with support for on-line monitoring of the
response time, output values and energy consumption. The
proposed benchmarking platform has been implemented in
the DE4 development system to provide cycle-accurate tim-
ing measurement at nano-second precision to analyse high
performance applications. An evaluation of our approach
shows that the platform can be used in analysing the perfor-
mance of target applications and overheads of other timing
facilities, such as the interval timer on processors.

Keywords
FPGA, benchmarking, real-time systems

1. INTRODUCTION
A real-time system must respond to events within explicit

deadlines or the system may risk severe consequences. Ex-
amples of applications that require real-time response in-
clude flight control systems, robotics, assembly lines and
nuclear plant control. There are important requirements
that real-time systems must meet to support critical appli-
cations.

• Timeliness

• Functional correctness

For decades, a proliferation of work is proposed address-
ing the above issues. Advanced real-time applications re-
quire tight response time and measurement precision has
increased to microsecond level. For example, high-frequency
trading is becoming popular with execution time in the or-
der of microseconds [1].

However, traditional execution time analysis techniques
such as profiling are subject to precision problem. For soft-
ware, there is gprof to analyze where a program spent its

This work was presented in part at the Third International Work-
shop on Highly-Efficient Accelerators and Reconfigurable Technologies
(HEART2012), Naha, Okinawa, Japan, May 31-June 1, 2012.

execution time on. Some system calls allow obtaining sys-
tem time for execution time measurement. However, due
to factors such as compiler support and interrupt of I/Os,
these measurement techniques significantly degrade system
performance, having precision at most in milliseconds.

Despite simulation of system at register-transfer-level can
provide cycle-accurate information, simulation does not scale
well since technology advances are making real-time systems
more complex [2]. Distributed computing and multiprocess-
ing complicate task, resource and communication schedul-
ing. Static design and analysis methods are often infeasible
for ensuring correctness of systems within deployed environ-
ment.

Running benchmarks on deployed systems provides an ad-
ditional level of confidence as some defects at both timing
and functional aspects cannot be discovered before deploy-
ment. It also provides an opportunity to identify changes in
performance due to hardware, software or algorithms.

This paper presents Roberts, a real-time system bench-
marking platform using FPGA technology. The platform
tests the timeliness, functional correctness and energy con-
sumption of the system-under-test (SUT). The measurement
of response time is cycle accurate, with precision up to 3.6ns
on an FPGA running at 275MHz. Before benchmarking, a
test vector generation tool produces test vectors based on
timing and functional specification of the real-time system.
During benchmarking, the platform sends test vectors to the
SUT, captures output values, and detects timing or func-
tional errors.

The benchmarking approach is application driven. Roberts
exploits reconfigurability for customising the platform, such
that the SUT is not limited to those residing in the same
FPGA, but can be an external non-FPGA system with in-
terface to the benchmarking facilities. Moreover, the bench-
marking hardware can be detached from the system after
benchmarking so that it does not produce performance or
resource overhead for the system.

The contributions of this paper include:

• Roberts, a benchmarking platform for deployed real-
time system. The platform can be customised for a
given system-under-test to support system-level mea-
surement.

• An implementation of Roberts in the DE4 develop-
ment system, which is capable of cycle-accurate timing
measurement at nano-second precision to analyse high
performance applications.

• An evaluation of our approach, showing that Roberts

can be used in analysing the performance of processor-
based and logic-based applications.

The rest of this paper is organised as follows: Section 2
describes existing work in system testing and performance
measurement. Section 3 presents a design approach asso-
ciated with our platform. Section 4 provides details of the
implementation. Section 5 evaluates the effectiveness of the
proposed approach and Section 6 concludes this paper.

2. BACKGROUND
There has been much work on testing and verifying sys-

tem performance. Built-in self-test (BIST) has been well
studied and is widely used in testing integrated circuits [3].
The main purpose of BIST is to reduce test duration and
complexity of external test equipment. BIST is found in
safety-critical systems where comprehensive self-test is per-
formed at power up and a periodic self-test assures that the
system is safe within a safety interval [4]. These methods
add cost to the system, such as extra circuitry and memory
space. The test structure might affect the system perfor-
mance and the testing hardware itself can also fail. A BIST
for logic blocks in FPGAs has been proposed in [5], which
allows a test configuration to be programmed for off-line
testing.

An on-chip test architecture was presented in [6] to test
an SoC implemented on FPGA using run-time traffic pat-
terns. Output data from SUT are stored and uploaded for
off-line functional verification. In [7], programmable logic
cores are embedded on fixed-function integrated circuits for
debugging purpose. Real-time and on-chip profiling for soft
processor running on FPGA has been presented in [8] which
allows cycle-accurate execution time of specified code re-
gions to be measured. ChipScope Pro [9], SignalTap II [10]
and Corus [11] are commercial logic analyzers and toolkits
for on-chip FPGA verification and debug.

There are performance counter and internal timer for soft
processors on FPGA [12]. They provide a simple way of
measuring execution time. However, such methods have sev-
eral drawbacks, such as increased use of hardware, degraded
clock frequency, additional interrupts and longer latency.

Automated test equipment (ATE) is another testing ap-
proach which is commonly used in electronic manufacturing
industry [13]. ATE is able to test small electronic devices
as well as complex systems. It employs a master controller
to host test applications and store test results. An interface
test adapter (ITA) and prober provide connection between
the tester and device under test. ATE has two main prob-
lems [14]. First, the device under test could often be at the
leading edge of technology where the tester is not able to
test due to lack of speed and precision. Second, the tester
needs to react to a range of device. Cost is added to support
complex interfacing and coordination protocol.

There are benchmarking facilities utilising reconfigurable
hardware. Athena [15] is an evaluation tool for automated
benchmarking of cryptography algorithms targeting mul-
tiple FPGA platforms. GroundHog [16] is a benchmark-
ing suite that measures the power consumption of reconfig-
urable technology for mobile computing applications. Both
approaches target specific application domains, and do not
explicitly evaluate applications and systems with real-time
requirements. Hartstone [17] adopts Whetstone benchmark
programs as synthetic load for testing real-time systems’

ability to handle hard real-time applications. However, it
does not provide a framework which applies test data to
real-time systems and obtains information for evaluation.

3. PLATFORM DESIGN
In this section, we describe an approach for using Roberts

as a platform to benchmark timing and functional behaviour
of real-time systems. Much of the existing work on run-time
testing [6–12] does not focus on benchmarking real-time sys-
tems. They require modifications to the architecture under
test and do not explicitly verify the real-time requirements.

Our work performs automatic benchmarking at system-
level. There are two novel aspects which address the re-
quirements of real-time system as mentioned in Section 1:

• Roberts is a benchmarking platform which focuses on
assessing deployed systems in meeting real-time re-
quirements. It evaluates more for the SUT’s response
time rather than for its throughput. It addresses the
drawbacks of static analysis which does not involve en-
vironment effects on system performance. Timeliness
and functional correctness are explicitly specified and
verified in the benchmarking process. Measurement is
cycle-accurate at nano-second precision.

• Roberts exploits reconfigurability to customise for dif-
ferent applications and SUTs. The platform hardware
is designed as a template, which is a generic description
with different parameters to capture different customi-
sation. Given the timing requirement and data format
of the SUT, our benchmarking unit only needs cus-
tomisation of: a) clock frequency, b) I/O connections
to the SUT, c) interface to test vector storage.

Figure 1 shows the proposed benchmarking platform. It
consists of a host which is usually implemented off-line on a
computer and a benchmarking unit on an FPGA. The SUT
can be implemented on-chip or off-chip.

The host generates test vectors off-line for the benchmark-
ing unit. During benchmarking, the system driver sends test
vectors to the SUT and the monitor observes outputs at run-
time. Feedback from the benchmarking unit is visualised on
the host for debugging and updating SUT’s specification.

3.1 Pre-benchmarking
Figure 2 shows the design flow of Roberts. We first discuss

the pre-benchmarking stage, which is an off-line preparation
on the host.

The design flow starts from a specification of SUT. It in-
cludes timing properties (Table 1) and functional require-
ments (Table 2) given by user during system and applica-
tion design. Having the SUT specification, test vectors are
generated and the benchmarking unit is customised.

A k-bit test vector is denoted asX =< T,C, I,O >, where
T , C, I and O represent timing properties, control signals,
input data and output data, respectively. The length of I
and O determines the number of I/O pins connecting the
benchmarking unit and the SUT.

In step A, test vectors of real-time systems should incor-
porate timing properties T , such as duration and frequency
of input events, as well as response time of the system to
those events. Control signals C and input data I could oc-
cur periodically or at irregular intervals, the minimum of

Table 1: Timing parameters of an SUT specification
Timing properties Description
Input setup time The duration that an input value is applied to the SUT.
Response time Correct output should be generated within this time.

Output hold time The duration that the output should hold.

Table 2: Functional requirements of an SUT specification
Functional requirements Description

Functional model The functional level description of the SUT’s behaviour.
Input data The values needed for processing.
Output data The expected output value.

I/O connection The number of input/output pins of the SUT.

Feedback Unit

Results Analysis
Test Vector

Generation

System Driver

System-under-test

Test Vector

Storage

System Monitor

Customisable

Output Interface

Customisable

Input Interface

Host

(Computer)

Roberts

Benchmarking

Unit

(FPGA)

Figure 1: Interaction of Roberts and system-under-
test (solid and dotted arrows represent on-line and
off-line data transfer respectively)

which is t seconds. The number of input events determines
the number of test vectors which is denoted as n.

In step B, functional simulation generates correct outputs
O based on the input events. Simulation could be performed
by a software test bench, such as one coded in SystemC or
Verilog, that emulates the operations performed by the SUT.
At this point, there are n test vectors which include golden
timing and functional information.

In step C, the benchmarking unit is customised according
to the input event interval t and number of test vectors n.
The benchmarking unit is provided as a template, which
allows parameterisation of frequency, I/O connections and
interface to test vectors’ storage.

Here is an illustration of the customisation of benchmark-
ing unit. Consider an SUT reading input data in intervals
of t seconds. To satisfy the input timing requirement, the
benchmarking unit should run at a clock frequency f and
send test vector for l cycles. The relationship of f and l is
described as follows:

Test vector

storage

Input

events

Timing Functional

SUT specification

SUTBenchmarking

unit

Pre-benchmarking

Benchmarking

Feedback

unit

Timing Storage

FPGA specification

Test vectors

C) Benchmarking

unit customisation

B) Functional

simulation

A) Test vector

generation

Figure 2: Design flow of the benchmarking platform

l = ⌊t× f⌋where l ≥ 1 (1)

The benchmarking efficiency is bounded by the memory
throughput. The throughput requirement p of test vector
storage is:

p =
k

t
(2)

Our template employs on-chip memory blocks where pos-
sible to buffer test vectors and maximise memory through-
put. The allocation of memory blocks depends on the test
vectors width and supported memory configuration of the
FPGA. When the size of test vectors is too large to fit in
on-chip memory, interface to off-chip data storage is pro-
vided and the on-chip memory remains as data buffer. The
size of test vectors, denoted as s is:

s = n× k (3)

Figure 3 illustrates the customisation steps (step C in Fig-
ure 2) of the benchmarking unit. As an example, consider
the following settings:

• SUT specification - The SUT is running at 400MHz.
It is pipelined requiring input every 2 clock cycle, i.e.

SUT specification

Test vectors

FPGA specification

Calculate f and l

from eq. (1)

Calculate p and s

from eq. (2) and (3)

Decide storage

of test vectors

(on-chip/off-chip)

Steps A and B

Benchmarking unit

Obtain I, O and T

from test vectors
Decide I/O pins

Figure 3: Benchmarking unit customisation flow
(Step C)

t = 2/(400 ∗ 106) = 5ns. There are 1000 test vectors
(n = 1000).

• FPGA specification - The maximum clock frequency
of the benchmarking platform is 200MHz.

• After steps A and B - Timing information is repre-
sented in 32 bits (T = 32). Control signals occupy 2
bits (C = 2). Input data and output data are 32 bits
each (I = O = 32). Therefore, k = 32 + 2+ 32 + 32 =
98.

Using equation 1, f = 200MHz and l = 1. According to
equation 2 and 3, p = 2.45GB/s and s = 12KB.

As a result, the benchmarking unit needs to be clocked at
200MHz with one test vector fetched every clock cycle. 64
I/O pins are needed to connect the SUT and benchmarking
unit. The total size of test vector is 12KB and the memory
throughput should be at least 2.4GB/s. In this example, the
size of test vectors is able to put in on-chip memory blocks
of the FPGA. Two on-chip memory blocks with depth of
1000 are used, one has 64 bits data width for I/O data, the
other has 32 bits data width for timing information.

3.2 Benchmarking
During benchmarking, the benchmarking unit automati-

cally checks functional correctness in different real-time sit-
uations. Power consumption is monitored through an ADC
connected to a current meter. It communicates with the
SUT through an interface customised in step C of the pre-
benchmarking stage (Figure 2).

The SUT is subject to the effect of system workload and
environmental stimulus. For example, a computer system
may be processing several processes simultaneously and af-
fected by surrounding environment such as communication
latency. The benchmarking unit reflects the effects of these
issues on performance.

The benchmarking unit includes a system driver and a
system monitor. The system driver fetches test vectors from
the storage and sends test data to the SUT for required input
clock cycles. At the same time, golden results, including
expected output value and timing properties are sent to the
monitor for verification.

The system monitor samples output values of the SUT
and verifies the timing and functional correctness. The

checked results are fed back and visualised on the host com-
puter. Based on the feedback information, the SUT is de-
bugged.

To improve benchmarking efficiency, the system monitor
could send feedback to the system driver which would opti-
mize the selection of test vectors being sent to the SUT. For
example, regression testing could dynamically select the set
of test vectors covering a particular area of interest. This al-
lows the system to be tested more effectively because bench-
marking could involve millions of test vectors. This part will
be addressed in the future.

4. IMPLEMENTATION
In this section, the implementation of Roberts is given in

detail.

4.1 Test Vector Generation
Extensible markup language (XML) is used for the test

vector description which consists of timing and functional
properties. The properties can be given explicitly by user
or generated randomly in defined ranges.

We use SystemC and Verilog to describe the functional
model of SUT and perform functional simulation to produce
golden output values. Combining input events and golden
output values, a test vector file is generated.

4.2 Benchmarking Unit
The benchmarking unit can be implemented on any FPGA

device. The design of I/O pins and interface are easily
customised and automated by scripts. For demonstration
purpose, we use an Altera DE4 development board with a
Stratix IV EP4SGX530 FPGA.

The maximum clock frequency of the benchmarking unit
is 275MHz, which is generated by a phase-locked loop (PLL)
from a 50MHz clock. An on-chip memory block is instan-
tiated for storing test vectors. The memory block employs
dual-port access, so when the size of test vectors scales, off-
chip data storage is used and the on-chip memory block acts
as a data buffer.

The resource and power overhead of the benchmarking
unit is small. When the benchmarking unit is clocked at
167MHz with 162 bits test vectors, it uses 689 ALUTs (0.16%),
309 registers (0.073%) and draws 0.35W power.

The benchmarking unit and SUT are linked through the
general purpose I/Os on the FPGA board. To simplify the
evaluation setting, both the benchmarking unit and SUT
reside on the same FPGA, but this is not a requirement of
our approach.

Following timing specification, the system driver fetches
test vectors from the on-chip memory, and sends data to the
SUT. It also sends golden data and timestamps to a FIFO.

The system monitor is responsible for checking the timing
and functional correctness of SUT. First, the monitor checks
the FIFO in every clock cycle to see if there is any data
waiting for checking. If so, it calculates the elapsed cycle. If
the expected output is not obtained from the SUT within the
required clock cycle, a deadline is missed and the monitor
asserts a response time error.

The Altera’s SignalTap II logic analyzer acts as a feed-
back unit to visualise and record signals captured by the
benchmarking unit. It provides flexibility to debug the SUT
according to specific system states and data values.

The power and energy consumption of the SUT are de-
rived from the current measurement using an ADC on the
DE4 development board. If such interface is not available,
an external current meter can be used.

5. EVALUATION
This section illustrates how Roberts benchmarks real-time

systems.

5.1 Benchmarking processor-based applications
We benchmark a SUT running on a NIOS II/e soft pro-

cessor, which is clocked at 150MHz. The SNU real-time
benchmark suite [18] is used as test programs running on
the soft processor. It contains numeric and DSP algorithms
written in C language for execution time analysis. We have
selected several of them for benchmarking as listed in Ta-
ble 3.

Table 3: SNU real-time benchmark programs
Benchmark Description

sqrt Square root function implemented
by Taylor series.

fft1 FFT using Cooly-Turkey algorithm.
ifft1 Inverse FFT.

minver Matrix inversion for
3x3 floating-point matrix.

qsort Non-recursive quick sort on
20 floating-point numbers.

During benchmarking, test vectors are sent to the SUT
sequentially in time interval of 100µs, i.e. t = 100µs. The
processor starts processing once all the data are obtained.

A test vector consists of 32 bits input data, 32 bits output
data, 96 bits timing properties and 2 bits control signals,
i.e. k = 162, T = 96, C = 2 and I = O = 32. For each
benchmark program, 100 sets of test data are used such that
the number of test vectors n varies from 100 to 2000.

Using equation 1, the benchmarking unit has 64 I/O pins.
It is set to run at 100MHz and the test vector input rate is
10000 cycles. Using equation 2, the throughput requirement
is 202.5KB/s. The maximum amount of test vectors is 40KB
following equation 3. Considering the test data size and
throughput requirement, all the test vectors are stored in
on-chip memory of the FPGA.

Table 4 shows the average processing time of the bench-
mark programs measured using Roberts. For comparison,
we also use a 32-bit timestamp interval timer available in
NIOS II.

Both Roberts and the interval timer have measured sim-
ilar response time. For Roberts clocked at 100MHz, the
measurement precision is 10ns. For the interval timer, the
measurement precision is 2 clock cycles which is 13.3ns. An

Table 4: Average processing time of benchmark pro-
grams (Time is in µs)

Roberts Interval timer
sqrt 142.97 141.57
fft1 2254.37 2253.36
ifft1 2435.44 2434.45

minver 4.99 3.09
qsort 104.19 103.21

offset of about 1µs is observed because our method has taken
two things into account: 1) The communication time be-
tween the benchmarking platform and the SUT, such as in-
terrupt latency; 2) The time that the interval timer itself
spent on reading timer values.

In summary, compared with the interval timer, Roberts
has the following advantages:

• Not intrusive to the SUT - To read the interval timer’s
values, explicit read calls are added to the source code.
The interval timer creates frequent interrupts which
consume processor cycles at the beginning and at the
end of measurement sections.

• Measurement of point-to-point latency - The interval
timer is only able to measure a selected section of code
running inside the system. Roberts takes interrupt
latency and non-deterministic environment effects into
account.

5.2 Benchmarking an FPGA application
A JPEG encoder IP core [19] is used to demonstrate Roberts

in benchmarking high performance data processing applica-
tion. For an input image, one input data represents the red,
green, and blue pixel values and each pixel value is repre-
sented in 8 bits, so the input data bus is 24 bits wide. The
encoder processes images block by block. Each 8x8 block
of data needs to be input to the encoder on 64 consecutive
clock cycles. The JPEG bitstream is output through a 32
bits bus.

The encoder is clocked at 167MHz, which is the maximum
frequency recommended by the CAD tool. The encoder re-
quires input every clock cycle, so t = 1/(167∗106) = 5.99ns.

Combining I/O data, control and timing values, one test
vector is 162 bits wide (k = 162), with T = 96, C = 1,
I = 26 and O = 39.

Using equation 1, the benchmarking unit should run at
167MHz when the test vector input rate is 1 cycle. Equa-
tion 2 suggests that the minimum throughput is 3.34GB/s.
The largest image has 55K pixels. Combining data and con-
trol signals, there are 57K test vectors (n = 65K) leading
to 1.2MB test data, it is sufficient to store all test vectors in
the on-chip memory of FPGA.

If the encoder is used in a camera to compress image or
produce motion JPEG video, it is subject to real-time re-
quirement. For example a camera needs to compress an
image to JPEG in 0.5ms. We use Roberts to measure the
processing time of the JPEG encoder versus different image
sizes, as shown in Figure 4.

Roberts can be used to identify additional performance
margin of the SUT. When the JPEG encoder is clocked at
167MHz, it fails to process an image in 0.5ms if the im-
age size exceeds 55K pixels. However, when it is clocked at
175MHz, the encoder is able to meet the processing time re-
quirement without any failure. The deployed system can run
faster than the maximum frequency reported by static tim-
ing analysis of the CAD tool, because the tool is more con-
servative due to consideration of silicon, environment and
data variability.

The dynamic power consumption of the encoder is 86mW
based on the ADC readings. Figure 5 shows the energy con-
sumption of the JPEG encoder. Since the power consump-
tion of the encoder is consistent, the energy consumption
increases linearly with the processing time.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 10000 20000 30000 40000 50000 60000

P
ro

ce
ss

in
g

tim
e

(m
s)

Number of pixels

167MHz
175MHz

Real-time bound

Figure 4: Processing time of JPEG encoder versus
difference image sizes

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0 10000 20000 30000 40000 50000 60000

E
ne

rg
y

(m
J)

Number of pixels

167MHz
175MHz

Figure 5: Energy consumption of JPEG encoder
versus difference image sizes

6. CONCLUSION
This paper presents a benchmarking platform for real-

time systems. The reconfigurability of FPGA allows a cus-
tomisable benchmarking unit. Cycle-accurate measurement
is performed to check timing and functional correctness. The
evaluation platform on FPGA demonstrates its ability to
capture SUT’s point-to-point response time at nano-second
resolution.

In the future, it would be of great interest to design a set
of benchmark programs that target Roberts for evaluation
of real-time systems. Further research includes test vector
compression, dynamic test vector selection and extension of
our approach to benchmark run-time reconfigurable designs.
Lastly, the feedback data from benchmarking would also be
useful in run-time frequency scaling [20] and error handling
of real-time systems.

Acknowledgment
The support of the Croucher Foundation, UK EPSRC and
Altera is gratefully acknowledged. The research leading
to these results has received funding from the European
Union Seventh Framework Programme under grant agree-
ments number 248976, 257906 and 287804.

7. REFERENCES
[1] M. J. Mcgowan, “The rise of computerized high

frequency trading: use and controversy,” Duke L. &
Tech, 2010.

[2] J. Stankovic, “Misconceptions about real-time
computing: a serious problem for next-generation
systems,” Computer, vol. 21, no. 10, pp. 10–19, 1988.

[3] E. Mccluskey, “Built-in self-test techniques,” IEEE
Design & Test of Computers, vol. 2, no. 2, pp. 21–28,
1985.

[4] N. R. Storey, Safety Critical Computer Systems.
Addison-Wesley Longman Publishing Co., Inc., 1996.

[5] C. Stroud et al., “Built-in self-test of logic blocks in
FPGAs (finally, a free lunch: BIST without
overhead!),” in Proc. IEEE VTS, 1996, pp. 387–392.

[6] W. Chen and L. Shannon, “An on-chip testbed that
emulates runtime traffic and reduces design
verification time for FPGA designs,” in Proc. Int.
Conf. on FPT, 2008, pp. 361–364.

[7] B. Quinton and S. Wilton, “Post-silicon debug using
programmable logic cores,” in Proc. Int. Conf. on
FPT, 2005, pp. 241–247.

[8] L. Shannon and P. Chow, “Using reconfigurability to
achieve real-time profiling for hardware/software
codesign,” in Proc. Int. Symp. on FPGA, 2004,
pp. 190–199.

[9] ChipScope Pro and the serial I/O toolkit. [Online].
Available: http://www.xilinx.com/tools/cspro.htm

[10] Design debugging using the SignalTap II logic
analyzer. [Online]. Available: http://www.altera.com/
literature/hb/qts/qts qii53009.pdf

[11] Corus. [Online]. Available: http://www.veridae.com/
index.php/products/corus-suite.html

[12] AN 391: Profiling Nios II Systems - Altera. [Online].
Available: http://www.altera.com/literature/an/
an391.pdf

[13] J. M. Ellis, “Application specific automated test
equipment system for testing integrated circuit devices
in a native environment,” US Patent 6 324 485, 1999.

[14] D. Gizopoulos, Advances in Electronic Testing:
Challenges and Methodologies (Frontiers in Electronic
Testing). Springer-Verlag, 2006.

[15] K. Gaj et al., “ATHENa - Automated Tool for
Hardware EvaluatioN: Toward Fair and
Comprehensive Benchmarking of Cryptographic
Hardware Using FPGAs,” in Proc. Int. Conf. on FPL,
2010, pp. 414–421.

[16] P. Jamieson et al., “Benchmarking and evaluating
reconfigurable architectures targeting the mobile
domain,” ACM Trans. on Design Automation of
Electronic Systems, vol. 15, pp. 14:1–14:24, 2010.

[17] N. Weiderman, “Hartstone: synthetic benchmark
requirements for hard real-time applications,” in Proc.
PIWG, 1990, pp. 126–136.

[18] SNU real-time benchmarks. [Online]. Available:
http://www.cprover.org/goto-cc/examples/snu.html

[19] JPEG Encoder Verilog. [Online]. Available: http://
opencores.org/project,jpegencode

[20] J. Bower et al., “Dynamic clock-frequencies for
FPGAs,” Microprocessors and Microsystems, vol. 30,
no. 6, pp. 388–397, 2006.

http://www.xilinx.com/tools/cspro.htm
http://www.altera.com/literature/hb/qts/qts_qii53009.pdf
http://www.altera.com/literature/hb/qts/qts_qii53009.pdf
http://www.veridae.com/index.php/products/corus-suite.html
http://www.veridae.com/index.php/products/corus-suite.html
http://www.altera.com/literature/an/an391.pdf
http://www.altera.com/literature/an/an391.pdf
http://www.cprover.org/goto-cc/examples/snu.html
http://opencores.org/project,jpegencode
http://opencores.org/project,jpegencode

