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Abstract—A design approach is proposed to automatically
identify and exploit run-time reconfiguration opportunities
while optimising resource utilisation. We introduce Recon-
figuration Data Flow Graph, a hierarchical graph structure
enabling reconfigurable designs to be synthesised in three steps:
function analysis, configuration organisation, and run-time
solution generation. Three applications, based on barrier option
pricing, particle filter, and reverse time migration are used
in evaluating the proposed approach. The run-time solutions
approximate the theoretical performance by eliminating idle
functions, and are 1.31 to 2.19 times faster than optimised static
designs. FPGA designs developed with the proposed approach
are up to 28.8 times faster than optimised CPU reference
designs and 1.55 times faster than optimised GPU designs.

Keywords-run-time reconfiguration, reconfigurable comput-
ing, high performance computing

I. INTRODUCTION

Resource sharing and allocation for multicore and many-
core processors are usually achieved through thread manage-
ment at run time [1]. Such run-time thread management is
general purpose, but does not support reorganisation and cus-
tomisation of computational resources to meet application-
specific requirements. Reconfigurable computing involves
design customisation at compile time and at run time.
However, such customisation often restricts resource sharing
to function level, since a static design customised to support
one function often cannot support a different function.

This paper proposes a novel approach for designing
run-time reconfigurable systems which improves resource
utilisation and data throughput. The approach is intended
to support resource sharing at multiple levels of the design
abstraction. The contributions of this work include:

- A novel method to automatically generate run-time
solutions for applications based on Reconfiguration
Data Flow Graph, a hierarchical graph structure for
analysing and optimising designs. See Section III.

- Algorithms to identify reconfiguration opportunities
through function property extraction and data depen-
dency assignment; the As Timely As Possible (ATAP)
assignment method is introduced to preserve algorithm
parallelism and to identify reconfiguration opportuni-
ties. See Section IV.

- Configuration generation and optimisation approaches
to dynamically exploit available hardware resources.
Generated configurations are optimised based on func-
tion properties, to fully utilise available resources. See
Section V.

- Techniques for generating run-time solutions by group-
ing configurations in different time slots. An ending-
edge search algorithm is proposed to reduce the search
space by introducing hardware design rules. Generated
run-time solutions are evaluated in terms of overall
throughput. See Section VI.

- Evaluation of the proposed approach by three high
performance applications in finance, control, and seis-
mic imaging, with comparisons against CPU and GPU
designs. See Section VII.

II. RELATED WORK

Run-time reconfiguration is a technique exclusive to
FPGA technology for improving productivity and perfor-
mance. During design time, run-time reconfiguration can
be used to accelerate design validation [2]. During run
time, designs with slowly varying inputs can benefit from
run-time reconfiguration. Performance improvements due to
run-time reconfiguration have been reported for adaptive
32-tap FIR filters [3], robotic applications [4] and sorting
architectures [5]. In this work, we focus on improving
system throughput by dynamically reconfiguring tasks.

Temporal partitioning is investigated in [6] to fit large
applications into limited logic area. Tasks are represented
using data flow graphs (DFGs), and partitioned under re-
source constraints. The problem is formulated as an Integer
Non-linear Programming (INLP) model [7] to minimise
communication between partitioned segments. Spatial par-
titioning is covered in [8] to support multiple devices. The
motivation for these partitioning algorithms is to fit large
applications into small FPGAs, while our work focus on
how to identify and eliminate inefficient functions, using
run-time reconfiguration.

III. OVERVIEW OF APPROACH

To capture and exploit reconfiguration opportunities in
high-performance applications, the major challenges in-



clude: (1) how to identify reconfiguration opportunities, i.e.,
idle functions, (2) how to estimate and utilise the benefits
for reconfiguring idle functions, and (3) how to generate
a run-time solution that ensures functionality correctness,
and improves system performance. To address these chal-
lenges, Reconfiguration Data Flow Graph (RDFG), a new
hierarchical design representation, is proposed to support
target applications. Within a function, idle cycles of the
function are analysed with input edge offset, and resources to
implement the function are estimated with algorithm details.
At function level, functions are grouped based on data
dependency and idle cycles for ATAP assignment. Functions
active at the same time are fully replicated based on the
estimated resource consumption. Algorithms and designs
rules are proposed to generate optimised run-time solutions
from grouped functions. The basic idea of this paper is
demonstrated with a motivating example.

In a static design, all functions are mapped into re-
configurable fabrics and replicated as much as possible to
optimise concurrency. However, limited by data dependency
and mapping strategies, some computational resources can
be left idle from time to time. This situation is shown in
Figure 1(b): there are four function units, each implementing
respectively the function A, B, C and D in the dataflow graph
in Figure 1(a). Given that each function takes n cycles, the
entire computation would take 4n cycles. It is assumed that
the application RDFG indicates each function consumes 1
resource unit, and computation within functions depends on
the last output data of the leading functions. For t=0..4n-1,
several function units would become idle. How could run-
time reconfiguration be used to reduce the number of cycles
required for this computation?

One possibility involves reconfiguration of the idle func-
tion units to perform useful work. Let us assume that there
is sufficient data independence in each function to enable
linear speedup with additional function units: for k function
units, the function takes n/k cycles to complete. So for k=1,
it takes n cycles to complete the function as described before,
and if k=n, it could potentially only take one cycle, although
in practice, k is likely to be smaller than n.
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Figure 1. Motivating example. (a) Data flow graph. (b) Static implemen-
tation, showing which function units are inactive (with dotted boundaries)
from time=0 to 4n cycles. (c) Dynamic implementation.

With this assumption, Figure 1(c) shows a design which
speeds up computing the second functions A and B in the
data flow graph in Figure 1(a) by reconfiguring the two
idle function units C and D to A and B. This increase in
parallelism means that these functions can be completed in
n/2 cycles, from t=n..3n/2-1. For the third functions, B and C
are reconfigured as A and D, finishing computation in B and
C in n/2 cycles, from t=3n/2..2n-1. Then the same can be
done in computing the last function C in the dataflow graph:
this time all four function units are configured to compute C
so that it can be completed in n/4 cycles, from t=2n..9n/4-1.
The total number of cycles is thus 9n/4, reduced from the
4n cycles for the static design in Figure 1(b).

One can observe that in the reconfigurable design above,
limited by the reconfiguration granularity, function unit D is
inactive in t=0..n-1. If target platforms support reconfiguring
designs consuming less than one unit, the one resource unit
can be evenly split between A, B and C; this increase in
parallelism would reduce the number of cycles from n to
3n/4, so that the total number of cycles for computing the
dataflow graph in Figure 1(a) would become 2n.

Of course, the scenario for the motivating example is not
realistic; many real-world issues, such as the time required
in reconfiguring the function units, are not considered. In
the following, we introduce an approach that supports the
performance improvement illustrated by this example, while
taking into account practical issues in reconfigurable design.

A RDFG for an application can be expressed as:

A = (G,EG) G = (V,E) (1)

where G and EG represent functions of the target application
and the communication between functions, and within a
function node G, V and E refer to its arithmetic operations
and interconnections.
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Figure 2. An application presented with RDFG, at (a) algorithm level and
(b) function level.

As shown in Figure 2, at algorithm-level, arithmetic oper-
ations within a function are mapped into a data-flow graph,



with input edges weighted with offset values. Algorithm
details of function node G0 are shown in Eq.2, where i and
j are respectively data index and offset value, and cj are
multiplication coefficients. In the current method, the offset
values must be specified during design time.

∀i ∈ (1, 2, ..n) yi =

4�

j=1

cj · (xi+5−j + xi+5+j) (2)

At function level, interactions between function nodes are
captured, and the functions nodes are separated into different
configurations, to generate valid run-time solutions.

A hierarchy is built for run-time solution generation,
to handle design issues at different levels. From bottom
to top, a function-level RDFG is divided into segments,
configurations and partitions.
Segments: Function nodes that can be executed without
stalling are combined into a segment S = (G1, G2...). Seg-
ments are the basic elements that respect data dependency
and expose runtime potential of applications.
Configurations: A configuration C = (S1, S2...) contains
one or multiple segments. A configuration can be synthe-
sised and executed in hardware.
Partitions: A valid partition P = (C1, C2...) is a combi-
nation of configurations that is capable of properly accom-
plishing the application functionality.

The approach includes three steps: function analysis,
configuration organisation and run-time solution generation.
First, function details and idle cycles are analysed for
each function node, and functions assigned the same data-
dependency levels are combined into a segment. Second,
segments are distributed into different configurations to
separate functions active at different time. Configurations
are optimised to fully utilise available resources. Finally,
the configurations are linked as complete run-time solutions,
referred to as partitions. All valid partitions are evaluated
and the partition with maximum throughput is mapped into
hardware. The three automatic steps are presented in more
detail in the following sections.

IV. FUNCTION ANALYSIS

A. Function Property Extraction

Function properties include resource consumption, data
access patterns and the number of idle cycles of a function.
The algorithm-level graph within a function node Gi pro-
vides details to implement and optimise the specific function.
Fully pipelined data-paths and on-chip memory architectures
are constructed to support full resource utilisation of con-
sumed resources, i.e., as long as Gi is active, one data-path
for Gi generates one result per clock cycle.

Arithmetic operations within a function are connected as
a pipelined data-path. Within a function node, the resources

consumed on arithmetic operations can be estimated as:

Ls =
�

i∈�

Ni ·RL,i � = {+,−, •,÷} (3)

where Ls accounts the resource consumption for LUTs, Ni

indicates the number of operators for arithmetic operation
type i, and RL indicates the number of LUTs consumed for
one arithmetic operator i. Similarly, resource consumption
for FFs (Fs) and DSPs (Ds) can be estimated.

Input data offset values include relative offset values
and absolute offset values. The relative values refer to
the relative position between the minimum offset and the
maximum offset, i.e., the number of buffered data. For a
function node Gi, its input nodes are traversed and the
offset values are combined into Gi.mem, where memmax

indicates the maximum offset value, and memmin indicates
the minimum offset value. As an example, for the application
in Figure 2, G0.mem is [1, 9], where memmax = 9 and
memmin = 1. A memory architecture buffering 9 consecu-
tive data is generated. With new data shifted into the memory
architecture every clock cycle, a data-path connected to
the memory architecture can run without stalling. On-chip
memory resource consumption for a function node can be
calculated with the relative position as follows. RM is the
memory resource consumption for buffering one datum.

Ms = (memmax −memmin + 1) ·RM (4)

The absolute offset values account for the number of idle
cycles a function node waits after consuming the first input
data. When memmin < 0, the computation depends on
the first input data, and computation of the function node
starts once the memory architecture is filled. However, if the
minimum offset is above 0, there will be another memmin

idle cycles due to data dependency. For G0 in Figure 2,
as memmin = 1, the data buffering will start when x1 is
available. The overall idle cycle Nid can be calculated as
the sum of the idle cycles due to data dependency and the
cycles to fill memory architectures.

Nid = memmax +
|memmin| −memmin

2
+ 1 (5)

B. Segment Generation

Function nodes are grouped into segments based on
assigned data-dependency levels. In our method, As-Late-
As-Possible (ALAP) levels are assigned to protect data de-
pendency between functions. Within each ALAP level, As-
Timely-As-Possible (ATAP) levels are assigned to separate
functions active at different time.

Various scheduling algorithms have been proposed to
ensure correct execution of nodes in a graph [6], [8]. The
ALAP level [9] Gi.alap is assigned to simplify communi-
cation between different configurations. As function nodes
are scheduled at the latest opportunities, output data of a
function can be directly used by its following function. As



Algorithm 1 As Timely As Possible Assignment.
input: G, function nodes assigned with ALAP levels
output: S, generated segments

1: for Gi ∈ G do
2: Gi.atap ← Gi.Nid

3: for Gj ∈ Gi.outputs do
4: if Gj .alap = Gi.alap + 1 then
5: if !Gj .Nid then
6: Gj .alap ← Gj .alap - 1
7: Gj .atap ← Gi.atap
8: end if
9: end if
10: end for
11: S<Gi.alap,Gi.atap>.add(Gi)
12: end for

full-reconfiguration is used in current method, for dynamic
designs, the communication between consecutive configura-
tions in dynamic designs is not affected by reconfiguration:
output data of the current configuration are transferred from
local memories into host memories before reconfiguration
takes place, and from host memories to local memories after
reconfiguration. For the motivating example in Figure 1, if
function node D is scheduled As-Soon-As-Possible (ASAP),
feeding output data of D into function node C requires
complicated memory transfer control, while assigning ALAP
levels ensures only output data of the previous configuration
need to be transferred.

Functions within the same ALAP level can run in parallel
with data dependency protected. However, functions with
different Nid can still be idle from time to time. Within
each ALAP level, ATAP levels are assigned based on Nid of
function nodes, as shown in line 2 of Algorithm 1. During
the assignment, functions with 0 Nid are considered as a
special case, as the 0 idle cycle indicates the functions start
computation once input data are available. Therefore, im-
plementing this function together with its leading functions
would not introduce idle cycles. Algorithm 1 identifies the
special case if Gi is the leading function node of Gj , and
function Gj has 0 idle cycle (line 3 to 5). Gj is then moved
up to the ALAP level of Gi, and its ATAP level is updated
as Gi.atap (line 6 and 7). Functions with the same ALAP
and ATAP level are combined into one segment (line 11).
Different segments include functions active at different time,
and idle cycles between the segments can be eliminated with
run-time reconfiguration.

V. CONFIGURATION ORGANISATION

After function-level RDFG is broken into segments, op-
erations at configuration level include distributing segments
into different configurations and optimising each configura-
tion to fully utilise available resources.

Ideally, every segment can be considered as a configura-
tion, and design inefficiency can be eliminated by dynam-
ically reconfiguring segments. However, in practice, large
reconfiguration overhead makes this approach impractical.

Algorithm 2 Configuration Generation.
Input: compressed segments S=(S0, S1...)
Output: all valid segments C=(C0, C1...)

1: for i = 0 → S.size do
2: Cbuf ← ∅

3: for j = i → S.size do
4: Cbuf .add(Sj )
5: C<i,j> ← Cbuf

6: end for
7: end for

For example, for a segment with ATAP level 2, if it
cannot be reconfigured within 2 clock cycles, combining
this segment with its neighbouring segments may provide
better performance. To provide proper run-time solutions,
all valid configurations should be generated. This can be
expressed as a combinatorial problem where all subsets of of
segments (S1, S2, S3...) are generated. However, the number
of combinations can easily become too large for processing
when graph size increases. Design rules are introduced to
remove invalid and redundant configurations.
Rule 1: Consecutive segments with same functionality are
compressed into one segment. The repetitive functionality
can be accomplished with the same hardware implementa-
tion. Distributing these segments into different configura-
tions cannot provides better run-time solutions.
Rule 2: As function segments are arranged according to
data dependency levels, only configurations with consecu-
tive segments are considered as valid. C1 = (S1, S3) is
considered as an invalid configuration. If implemented as
hardware, either S1 or S3 would stall.
The above two rules in configuration generation help to
eliminate redundant configurations from the search space,
without affecting the generation of valid configurations.
With segments compressed with Rule 1, Rule 2 defines
which segments can be combined. Algorithm 2 (line 1 to
3) searches segments in a consecutive manner, from source
nodes to segments assigned the maximum levels, and each
valid combination is stored as a configuration (line 4 and 5).

With functions active at different time distributed into
different configurations, hardware resources occupied by
idle functions are freed. The freed resources are utilised by
optimising each configuration. Required resources are first
extracted from included segments, and involved functions
are replicated to fully utilise available resources.

The required resources include hardware resources and
bandwidth requirements. As all arithmetic operators in data-
paths are working concurrently, consumed resources cannot
be shared. Therefore, in a configuration, resource consumed
on data-paths can be directly accumulated as follows, where
C is the target configuration, S and G are all segments and
function nodes included in C, and NG,i is the number of
operation type i in function node G.

Ls = P ·
�

S∈C

�

G∈S

�

i∈�

NG,i ·RL,i � = {+,−, •,÷} (6)



On-chip memory architectures, on the other hand, can be
shared by replicated functions. As an example, for function
node G0 in Figure 2, if two data-paths are implemented,
memi∪memi+1 only increases from [1,9] to [1,10]. Instead
of doubling the memory resource consumption, implement-
ing one more data-path only requires one more data to be
buffered. For a function with P parallelism, its memory
architecture can be updated as the union of buffered data
mem =

�P

i=1
memi. The memory resource consumption

for a configuration C can then be expressed as:

Ms =
�

S∈C

�

G∈S

(memmax −memmin + 1) ·RM (7)

Besides resources consumed on data-paths and memory
architectures, communication infrastructures consume re-
sources for connecting on-chip memory architectures to off-
chip data. The consumed LUTs, FFS, DSPs and BRAMs are
labelled as IL, IF , ID and IM , respectively, and considered
as constant parameters for each configuration.

Bandwidth requirements Br depends on the number of
input/output edges of a configuration. The number of input
edges Nin and output edges Nout of a configuration can
be updated by searching all edges in the configuration. As
only edges not connected to internal function nodes would
involve memory access, an input edge is considered as an
input edge of a configuration if its input node is not included
in the configuration. Similarly, if an output edge is pointing
at function nodes outside its configuration, it is included in
the configuration output edges. Br then can be expressed as:

Br = (Nin +Nout) · fdp · dw (8)

where fdp is data-path operating frequency, and dw is the
width of represented data.

Given required resources for a configuration calculated
based on function details, functions inside the configuration
can be replicated with a maximum parallelism P :

P = min(
AL − IL

Ls
,
AF − IF

Fs
,
AD − ID

Ds
,
AB

Br
) (9)

where AL, AF , AD, AM and AB are available LUTs,
FFs, DSPs, BRAMs and bandwidth of target platforms. As
Ms depends on design parallelism, it is updated for the
maximum P , and evaluated by AM − IM > Ms to ensure
the memory architectures can fit into available resources.

VI. RUN-TIME SOLUTION GENERATION

A valid partition consists of a combination of configu-
rations that respects data dependency and does not have
redundant functions. Optimised configurations are combined
into a partition as a complete run-time solution. During run-
time, the configurations are dynamically configured with
the combined order. Similar to the configuration generation
process, random combinations will generate invalid designs.
Several rules for partition generation are adopted to construct

the search space.
Rule 3: Data dependency between configurations is implied
by the combined segments. Configurations must be included
into partitions in a way that ensures segments with lower
data dependency level finish first. This requires the search
process to start from configurations including segments with
the lowest level.
Rule 4: As a complete solution, the generated partition
must be capable of accomplishing the functionality of target
applications. In other words, all compressed segments must
be included in the partition.
Rule 5: To ensure hardware efficiency, configurations with
overlapped segments cannot be combined into the same par-
tition. Otherwise, same functionalities will be implemented
multiple times, introducing redundant hardware.

∀(Ci, Cj) ∈ Pi Ci ∩ Cj = ∅

Rule 3 and Rule 4 locate respectively the starting
point and finishing point of the search operations. The
partition generation process for the motivating example
in Figure 1 is demonstrated in Figure 3. Configurations
are first mapped into a Configuration Graph as presented
in Figure 3(b), where a configuration with configuration
size i and configuration level j is labelled as C<i−1,j>.
The configuration size refers to the number of segments
included in the configuration, and the configuration level
indicates the lowest segment level in the configuration.
The search process begins from the starting point with
configurations at level 0, i.e, the first row in Figure 3(b).
The is ensured by the first line of Algorithm 3. For a
configuration C<2,0> = (S0, S1, S2), it has 3 segments, and
its configuration level is 0. Guided by the finishing point,
the search process aims to find other configurations to form
a partition including all relevant segments. Rule 5 limits
the search area. For C<2,0>, since (S0, S1, S2) are already
included, configurations with the same segments will be
removed from the search space. In Algorithm 3, the ending
edge of current configuration S2 determines the starting
level of the next search. For C3, the following configuration
should be searched from configuration level 3. Otherwise,
if configuration C<1,2> = (S2, S3) is included into the
same partition, the segment S2 will be implemented twice,
introducing inefficiency. Algorithm 3 (line 8, 17) ensures
the search directions by passing the starting level to the
next search. As shown in Algorithm 3, valid partitions are
generated recursively.

VII. RESULTS

Benchmark applications are developed with the proposed
design flow. The hardware designs are captured with Max-
Compiler version 2012.1, implemented on Xilinx Virtex-6
SX475T FPGAs, each hosted by one of the four MAX3424A
systems in an MPC-C500 computing node from Maxeler
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Algorithm 3 Ending-Edge Search Algorithm.

1: configuration level i ← 0
2: for configuration size j = 0→ configuration level.size do
3: Pbuf .add(C<i, j >)
4: if C<i,j>.size() == configuration level.size then
5: Partitions.add(Pbuf )
6: Pbuf .pop(C<i,j>)
7: else
8: Find Partition(Pbuf , C<i,j>.size())
9: end if

10: end for
11: return
12: Find Partition(Pbuf , start)
13: configuration level i ← start
14: for configuration size j = 0→ configuration level.size do
15: Pbuf .add(C<i,j>)
16: if C<i,j>.size() + start == configuration level.size then
17: Partitions.add(Pbuf )
18: Pbuf .pop(C<i,j>)
19: else
20: Find Partition(Pbuf , C<i,j>.size()+start)
21: end if
22: end for
23: return

Technologies. CPU designs are compiled with Intel Com-
piler (ICC) with -O3 flag opened, linked against OpenMP
libraries, and executed in a Dell PowerEdge R610, with
24 Intel(R) Xeon(R) X5660 cores running at 2.67GHz. An
NVIDIA Tesla C2070 card is used for GPU designs. GPU
implementations are optimised with popular techniques such
as access blocking and data coalescing [10]. For multi-
FPGA designs, GPIOs of FPGAs are used to exchange inter-
dependent data between parallel devices.

A. Benchmark Applications

Our benchmark applications involve multiple functions.
In addition to static designs, run-time reconfigurable designs
are produced and evaluated against CPU and GPU imple-
mentations. Three high performance applications, Barrier
Option Pricing (BOP), Particle Filter (PF) and Reverse
Time Migration (RTM) are developed using the proposed
approach.

Our first benchmark involves the Barrier Option Pricing
(BOP). An option is a financial instrument which provides

the owner the right but not the obligation to buy or sell an
asset at a fixed strike price K in the future. BOP is an exotic
multi-variable option which changes payoff function if the
price of underlying assets reaches the predetermined barrier.
Eq.10 shows the payoff function of a three-variable Barrier
put option, where vi is the payoff of the option at ith time
step; vEU

i is the price of a three-asset European option; bi
is the barrier level at time step i; S1, S2 and S3 are the
underlying asset prices at time step i.

vi =

�
vEU
i , if bi < S3

max
�
0,K − 3

√
S1S2S3

�
, if bi ≥ S3

(10)

For each payoff function, a 19-point convolution is con-
structed to calculate the payoff option modelled with the
Black Scholes PDE [11]. The application RDFG is presented
in Figure 4(a), with function A and B indicating the payoff
functions before and after reaching the barrier.
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Figure 4. Function-level RDFG of (a) BOP, (b) PF and (c) RTM.

Our second benchmark, Particle Filter (PF), is a methodol-
ogy for dealing with dynamic systems having non-linear and
non-Gaussian properties. It estimates the state of a system
by a sample-based approximation of the state probability
density function. PF has been widely used in real-time
applications including object tracking and robot localisa-
tion [12]. PF undergoes four key steps: particle generation,
weight updating, re-sampling, and grouping. A Monte-Carlo
method is used in the first step to generate particles with
random properties. An importance function is introduced in
the weighting step, to evaluate quality of generated particles.
After re-sampling, particles with higher weighting are ac-
cepted while the others are rejected, thereby refining the set
of particles for the next step. The grouping stage rearranges
the updated particles. As shown in Figure 4(b), particle
generation, weight updating, re-sampling and grouping are
represented as function node A, B, C and D, respectively.

Our third benchmark, Reverse Time Migration (RTM) is
an advanced seismic imaging technique to detect terrain
images of geological structures, based on the Earth’s re-
sponse to injected acoustic waves. The wave propagation
within the tested media is simulated forward, and calculated
backward, forming a closed loop to correct the terrain image.
The propagation of injected waves is modelled with the



isotropic acoustic wave equation [13], and solved with finite-
difference method. In our implementation, the propagation
is approximated with a fifth-order Taylor expansion in space,
and a first-order Taylor expansion in time. As demonstrated
in Figure 4(c), injected waves are first propagated from
injected nodes into detected terrain, labelled as function A.
Once the propagation reaches bottom, a reversed propagation
and a backward propagation are instantiated simultaneously,
represented as function nodes A and B. The propagated data
are convolved in function C to generate the terrain image.

B. Design Flow Output

The RDFGs of benchmark applications are fed into the
proposed design flow. Function nodes are assigned ALAP
and ATAP levels. Nodes A, B and C for PF (Figure 4(b))
are combined into the same segment, as ATAP levels of B
and C are 0. Similarly, function C of RTM (Figure 4(c)) is
moved into the segment containing function nodes A and B.
The number of generated segments are listed in Table I,
where G, S, C and P stand for the number of function
nodes, segments, configurations and partitions generated in
the proposed approach. After the ATAP assignment, the
number of segments reduces from 1501 to 501 for PF,
and from 3000 to 2000 for RTM. Before generating con-
figurations, consecutive segments including same functions
are compressed, leaving 2 segments for each application.
Limited by Rule 1 and 2, 3 configurations are generated
by Algorithm 2. For 2 segments, there will not be non-
consecutive segments, i.e., there will not be inefficient
configurations. If the number of segments goes beyond 2,
for example 4, instead of generating all 16 configurations,
Algorithm 2 would only generate the 9 valid configurations.
The generated configurations are put into the Configuration

Table I
OUTPUT RESULTS OF PROPOSED DESIGN FLOW

app G S C P static dynamic0 dynamic1
BOP 2000 2000 3 2 AB A B
PF 1501 501 3 2 ABCD ABC D
RTM 4000 2000 3 2 ABC A ABC

Graph shown in Figure 3(b). Leaded by Rule 3, 4 and 5, the
Ending-Edge Search Algorithm generates 2 valid partitions
for each application. As listed in the Table I, one partition
is the static design, where all functions are included in one
configuration, labelled as static. The other partition refers
to the solution using run-time reconfiguration to eliminate
idle functions, with the first and second configurations
respectively labelled as dynamic0 and dynamic1. With func-
tion properties extracted from algorithm-level RDFGs and
reduced search space thanks to the design rules, valid and
efficient run-time solutions are generated, from large-scale
application graphs.

C. Performance of Run-time Solutions

The generated run-time solutions are evaluated in terms of
execution time and resource utilisation ratio. Performance of

run-time solutions is measured for the MPC-C500 node. The
resource utilisation ratio is calculated as the ratio between
theoretical execution time and measured execution time.
The theoretical execution time is calculated assuming every
implemented data-path generates one result per clock cycle.
The reconfiguration overhead Or includes all configuration
time and data transfer time.

Table II
PERFORMANCE OF GENERATED RUN-TIME SOLUTIONS

app design P T (s) Or(s) utilisation speedup

BOP
static 24 111.84 0.79 0.496 1x
dynamic0 48 27.94

1.53 0.97 1.95x
dynamic1 48 28.2

PF
static 4 20.9 1.1 0.346 1x
dynamic0 10 7.41

2.2 0.76 2.19x
dynamic1 5 0.39

RTM
static 6 111.85 1.22 0.73 1x
dynamic0 12 27.96

2.38 0.962 1.31x
dynamic1 6 55.93

For the static BOP, the mutually exclusive functions
determine that only half of the resources can be used to
generate useful results. The design parallelism P is limited
by available on-chip resources. As listed in Table II, the idle
functions in static BOP reduce its utilisation ratio to only
0.496. By distributing function A and B into two hardware
configurations, design parallelism P is doubled for both
configurations, increasing the resource utilisation ratio to
0.97 and achieving 1.95 times speedup compared with the
static design. The left 0.03 inefficiency is introduced by the
reconfiguration overhead. For PF, the grouping function D
is stalled while particles are updated by function A, B and
C. During the grouping stage, function A, B and C are idle.
Resources occupied by idle functions are reconfigured to
support active functions. The optimised run-time solution
for PF runs 2.19 times faster than its static counterpart. For
RTM, the static design is bounded by available hardware
resources and memory bandwidth. As shown in Figure 4,
both function A and B require off-chip data. The memory
channels connected to function B are idle when only func-
tion A is processing data. The generated run-time solution
releases the idle resources and the idle memory channels,
increasing the design parallelism of the first configuration
to 12. The resource utilisation ratio reaches 0.96, and a 1.31
times speedup is achieved for the dynamic design.

D. Performance Comparison

Performance of the optimised partitions is compared with
CPU and GPU implementations, for both single-chip and
multi-chip systems. This verifies whether the method can
preserve high performance of optimised hardware while
achieving high resource utilisation, and evaluates efficiency
of the proposed method in multi-chip environment. To
provide a fair comparison, the throughput and efficiency
results include reconfiguration overhead Or and static power.

As shown in Table III, CPU implementations are used
as reference designs, generating 2.18 to 13.29 GFLOPS



Table III
COMPARISON OF APPLICATION PERFORMANCE IN CPUS, GPUS, STATIC FPGAS AND DYNAMIC FPGAS

Barrier Option Pricing Particle Filter Reverse-Time Migration
CPU GPU Sta Dyn CPU GPU Sta Dyn CPU GPU Sta Dyn

frequency (GHz) 2.67 1.15 0.1 0.1 2.67 1.15 0.1 0.1 2.67 1.15 0.1 0.1
execution time (s) 631.15 33.92 55.92 27.96 10 8.50 8.90 7.80 661.29 103.68 99.162 66.108
overhead (s) 0 0.43 0.798 1.526 0 1.50 1.10 2.20 0 0.59 1.22 2.38

throughput (GFLOPS)1 12.3 102.3 61.2 118.7 2.2 39.3 26.5 58.2 13.3 58.8 68.3 89.4
speedup 1x 8.3x 5.0x 9.6x 1x 18.0x 12.2x 26.7x 1x 4.4x 5.1x 6.7x

power (W)2 280 365 145 145 253 291 130 130 245 369 141 142
efficiency (MFLOP/W) 44.0 280.4 421.9 818.6 8.6 135.1 203.9 448.0 54.2 159.4 484.2 629.9
efficiency improvement 1x 6.37x 9.59x 18.61x 1x 15.67x 23.66x 51.99x 1x 2.94x 8.93x 11.61x

1 Throughput is calculated with all data transfer time and device configuration time included.
2 Power consumption includes both static power and dynamic power.

throughput. With high parallelism in processing units and
local memory systems, GPU designs achieve 4 to 18 times
speed-up. Based on results from NVIDIA Visual Profiler
(NVPP), GPU performance is limited by memory operations
to load data from global memory into local memory. The
efficiency is limited between 29.5% to 34.3%, i.e., 3 to 4
loading operations are required to load one block of data into
local memory. The inefficiency is introduced by the general-
ity of the GPU architectures. With run-time reconfiguration
introduced, available resources can be customised for each
configuration, based on function properties extracted from
RDFGs. The dynamic run-time solutions achieve up to 118.7
GFLOPS throughput, run up to 1.55 times faster, and are 2.9
to 3.9 times more efficient than the optimised GPU designs.

VIII. CONCLUSION

An automatic design method is proposed in this paper.
Run-time reconfiguration enables effective exploitation of
computational resources which would otherwise stay idle,
and we show that opportunities for such exploitation can be
automatically identified and optimised. Measured improve-
ments compared with static FPGA designs, CPU and GPU
designs are achieved. Currently, the design method is limited
by reconfiguration overhead and availability of application
information during design time.

In the future, partial reconfiguration will be introduced to
reconfigure only the parts that would change in successive
configurations, to minimise reconfiguration time. Run-time
solutions with improved granularity can thus be achieved.
Moreover, run-time optimisation will be integrated with
design-time optimisation. Optimisation opportunities within
a configuration will also be explored during run-time, to
incrementally optimise the allocated active functions.
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