
Imperial College London

Department of Computing

Optimising Reconfigurable Systems for
Real-time Applications

Thomas Chun Pong Chau

Submitted in part fulfilment of the requirements for the degree of
Doctor of Philosophy in Computing of the Imperial College London and

the Diploma of Imperial College London, March 2015

Declaration of Originality

This thesis is a presentation of my original research work. The contributions of others are

involved, every effort is made to indicate this clearly in the references to the literature and

acknowledgement of collaborative research.

3

4

Copyright Declaration

The copyright of this thesis rests with the author and is made available under a Creative

Commons Attribution Non-Commercial No Derivatives licence. Researchers are free to copy,

distribute or transmit the thesis on the condition that they attribute it, that they do not use it

for commercial purposes and that they do not alter, transform or build upon it. For any reuse

or redistribution, researchers must make clear to others the licence terms of this work.

5

6

Abstract

This thesis addresses the problem of designing real-time reconfigurable systems.

Our first contribution of this thesis is to propose novel data structures and memory architec-

tures for accelerating real-time proximity queries, with potential application to robotic surgery.

We optimise performance while maintaining accuracy by several techniques including mixed

precision, function transformation and streaming data flow. Significant speedup is achieved

using our reconfigurable system over double-precision CPU, GPU and FPGA designs.

The second contribution of this thesis is an adaptation methodology for real-time sequential

Monte Carlo methods. Adapting to workload over time, different configurations with vari-

ous performance and power consumption trade-offs are loaded onto the FPGAs dynamically.

Promising energy reduction has been achieved in addition to speedup over CPU and GPU

designs. The approach is evaluated in an application to robot localisation.

The third contribution of this thesis is a design flow for automated mapping and optimisation of

real-time sequential Monte Carlo methods. Machine learning algorithms are used to search for

an optimal parameter set to produce the highest solution quality while satisfying all timing and

resource constraints. The approach is evaluated in an application to air traffic management.

7

8

Acknowledgements

First and foremost, I would like to express my sincere gratitude to my advisor Professor Wayne

Luk. Only through his enthusiasm for research, timely words of encouragement, and immense

amount of patience, have I been able to develop into the person that I am today. His guidance

has helped me improve my papers, presentations, and this thesis tremendously. His trust has

always supported me throughout my research. I could not have imagined having a better

advisor for my Ph.D. study.

I would like to thank my secondary advisor Professor Peter Y.K. Cheung and my master

program’s advisor Professor Philip Leong. They opened the door to reconfigurable computing

research for me, and have inspire me throughout these years. I deeply appreciate their insightful

comments.

Special thanks are due to Alison Eele and Professor Jan Maciejowski in University of Cambridge,

and Benjamin Cope and Kathryn Cobden in Altera Corporation, for their collaboration in our

project on sequential Monte Carlo methods and air traffic management.

It is also a real privilege for me to study in the Custom Computing Group, Department of

Computing at Imperial College London. Thanks are specially given to Maciej Kurek, Xinyu

Niu, Kuen Hung Choi, Gary Chow and Ka-Wai Kwok for all the invaluable discussions and

collaboration. Thanks also to my past and present colleagues in the lab: James Arram, To-

bias Becker, Brahim Betkaoui, Pavel Burovskiy, Bridgette Cooper, Kit Cheung, Gabriel De

Figueiredo Coutinho, Stewart Denholm, Paul Grigoras, Ce Guo, Liucheng Guo, Eddie Hung,

Gordon Inggs, Qiwei Jin, Adrien Le Masle, Nicholas Ng, Shengjia Shao, Timothy Todman,

Anson Tse, Shulin Yan, Jinzhe Yang. I extend my gratitude to the project students, James

Targett, Marlon Wijeyasinghe, Jake Humphrey, Georgios Skouroupathis, in the Department of

Computing and the Department of Electrical and Electronic Engineering for all the productive

work.

I am grateful for an internship opportunity working in ARM Ltd. at Cambridge, UK. It was a

fruitful experience and I would like to thank my manager and mentor William Wang for sharing

his expertise and broadening my knowledge.

I am thankful for the generous financial support provided by the Croucher Foundation, UK En-

9

gineering and Physical Sciences Research Council, and the European Union Seventh Framework

Programme.

Lastly, my warmest thanks go to my wife, Kaijia, for her continued support throughout the

years. She is such an excellent cook that keeps me eating and studying well.

10

Dedication

To my parents,

for making me be who I am, and giving me the best education you could;

and to Kaijia,

for her patience, understanding and care during my hours of research, contemplation and

writing.

11

12

Publications

The following publication contributes to the precision optimisation of data-path in Chapter 3:

• T. C. P. Chau, K.-W. Kwok, G. C. T. Chow, K. H. Tsoi, Z. Tse, P. Y. K. Cheung, and

W. Luk, “Acceleration of real-time proximity query for dynamic active constraints,” in

Proceedings of International Conference on Field-Programmable Technology, 2013.

The following publications contribute to the run-time adaptation of system configuration in

Chapter 4:

• T. C. P. Chau, X. Niu, A. Eele, J. M. Maciejowski, P. Y. K. Cheung, and W. Luk, “Map-

ping adaptive particle filters to heterogeneous recongurable systems,” ACM Transactions

on Recongurable Technology and Systems, vol. 7, no. 4, 2014.

• T. C. P. Chau, X. Niu, A. Eele, W. Luk, P. Y. K. Cheung, and J. M. Maciejowski, “Het-

erogeneous reconfigurable system for adaptive particle filters in real-time applications,”

in Proceedings of International Symposium Applied Reconfigurable Computing, 2013.

The following publication contributes to the design flow for domain-specific reconfigurable ap-

plications in Chapter 5:

• T. C. P. Chau, M. Kurek, J. S. Targett, J. Humphrey, G. Skouroupathis, A. Eele, J.

Maciejowski, B. Cope, K. Cobden, P. Leong, P. Y. K. Cheung, and W. Luk, “SMCGen:

Generating reconfigurable design for sequential Monte Carlo applications,” in Proceedings

of International Symposium on Field-Programmable Custom Computing Machines, 2014.

The following publication contributes to the parameter optimisation approach in Chapter 5:

• M. Kurek, T. Becker, T. C. P. Chau, and W. Luk, “Automating optimization of re-

configurable designs,” in Proceedings of International Symposium on Field-Programmable

Custom Computing Machines, 2014.

13

The following publications contribute to the air traffic management application evaluated in

Chapter 5:

• T. C. P. Chau, J. S. Targett, M.Wijeyasinghe, W. Luk, P. Y. K. Cheung, B. Cope, A.

Eele, and J. M. Maciejowski, “Accelerating sequential Monte Carlo method for real-time

air traffic management,” SIGARCH Computer Architecture News, vol. 41, no. 5, 2013.

• A. Eele, J. M. Maciejowski, T. C. P. Chau, and W. Luk, “Parallelisation of sequential

Monte Carlo for real-time control in air traffic management,” in Proceedings of Interna-

tional Conference Decision and Control, 2013.

• A. Eele, J. M. Maciejowski, T. C. P. Chau, and W. Luk, “Control of aircraft in the

terminal manoeuvring area using parallelised sequential Monte Carlo,” in Proceedings of

AIAA Conference on Guidance, Navigation, and Control, 2013.

The following publications are published during my research but they are not discussed in this

thesis:

• X. Niu, T. C. P. Chau, Q. Jin, W. Luk, and Q. Liu, “Automating elimination of idle

functions by run-time reconfiguration,” in Proceedings of International Symposium on

Field-Programmable Custom Computing Machines, 2013.

• T. C. P. Chau, W. Luk, and P. Y. K. Cheung, “Roberts: Reconfigurable platform for

benchmarking real-time systems,” SIGARCH Computer Architecture News, vol. 40, no.

5, 2012.

• T. C. P. Chau, W. Luk, P. Y. K. Cheung, A. Eele, and J. M. Maciejowski, “Adaptive se-

quential Monte Carlo approach for real-time applications,” in Proceedings of International

Conference Field Programmable Logic and Applications, 2012.

14

Contents

Declaration of Originality 3

Copyright Declaration 5

Abstract 7

Acknowledgements 9

Dedication 11

Publications 13

List of Tables 21

List of Figures 23

Glossary 27

1 Introduction 29

1.1 Motivation . 29

1.2 Research Challenges and Contributions . 31

15

16 CONTENTS

1.2.1 Precision Optimisation of Reconfigurable Data-paths 33

1.2.2 Run-time Adaptation of System Configuration 34

1.2.3 Design Flow for Domain-specific Reconfigurable Applications 35

1.3 Thesis Organisation . 36

2 Background and Related Work 38

2.1 Introduction . 38

2.2 Reconfigurable Systems . 38

2.2.1 Architecture . 38

2.2.2 Design Flow . 41

2.2.3 Domain Specific Languages . 45

2.3 Real-time Systems . 45

2.3.1 Real-time Applications . 46

2.4 Summary . 55

3 Precision Optimisation of Data-paths 57

3.1 Introduction . 57

3.2 Formulation of PQ . 58

3.3 Optimisation for Reconfigurable Hardware . 63

3.3.1 Transformation of Trigonometric and Search Functions 63

3.3.2 Applying Reduced Precision . 64

3.3.3 Finding the Right Precision . 65

CONTENTS 17

3.4 Reconfigurable System Design . 66

3.4.1 Streaming Data Structure . 67

3.4.2 System Architecture . 67

3.4.3 Performance Model . 70

3.5 Experimental Evaluation . 73

3.5.1 General Settings . 73

3.5.2 Parallelism versus Precision . 73

3.5.3 Ratio of Re-computation versus Precision 75

3.5.4 Comparison: CPU, GPU and Reconfigurable System 75

3.6 Summary . 77

4 Run-time Adaptation of System Configuration 79

4.1 Introduction . 79

4.2 Adaptive SMC Algorithm . 80

4.3 Reconfigurable System Design . 84

4.3.1 Mapping Adaptive SMC to Reconfigurable System 85

4.3.2 FPGA Kernel . 85

4.3.3 Performance Model for Run-time Reconfiguration 88

4.4 Optimising Transfer of Particle Stream . 91

4.5 Experimental Results . 94

4.5.1 System Settings . 95

4.5.2 Adaptive SMC versus Non-adaptive SMC 96

18 CONTENTS

4.5.3 Data Compression . 98

4.5.4 Performance Comparison of Reconfigurable System, CPU and GPU . . . 98

4.6 Summary . 102

5 Design Flow for Domain-specific Reconfigurable Applications 104

5.1 Introduction . 104

5.2 SMC Design Flow . 105

5.2.1 Specifying Application Features . 108

5.2.2 Computation Engine . 108

5.2.3 Performance Model . 113

5.3 Optimising SMC Computation Engine . 115

5.3.1 Compile-time Parameters . 116

5.3.2 Run-time Parameters . 116

5.3.3 Parameter Optimisation . 119

5.4 Evaluation . 121

5.4.1 Design Productivity . 121

5.4.2 Application 1: Mobile Robot Localisation 121

5.4.3 Application 2: Air Traffic Management 123

5.5 Summary . 125

6 Conclusion 126

6.1 Summary of Achievements . 126

6.2 Future Work . 129

6.2.1 Proximity Query Formulation . 129

6.2.2 Adaptive Sequential Monte Carlo Methods 131

Bibliography 135

19

20

List of Tables

2.1 SMC design parameters. Dynamic: adjustable at run-time; Static: fixed at

compile-time. 51

2.2 Variables in air traffic management model. 55

3.1 Parameters of the performance model. 72

3.2 Comparison of PQ computation in 1 ms using CPU-based system (CPU), GPU-

based system (GPU), double precision FPGA-based reconfigurable system (RS

DP) and FPGA+CPU reconfigurable system with reduced precision (RS RP). . 77

4.1 Parameters of the performance model. 92

4.2 Comparison of adaptive and non-adaptive SMC on reconfigurable system. 97

4.3 Performance comparison of reconfigurable system (RS), CPU and GPU. 100

5.1 Parameters of the performance model. 115

5.2 Lines of code for two SMC applications under the proposed design flow. 121

5.3 Performance comparison of robot localisation. 122

5.4 Parameter optimisation of air traffic management system using machine learning

approach. 124

5.5 Performance comparison of air traffic management. 124

21

22

List of Figures

1.1 Illustration of heterogeneous processing topologies: (a) Pre-processing by FP-

GAs; (b) Co-processing between FPGAs and CPUs. 33

1.2 Thesis organisation. 37

2.1 Island-style FPGA (L: LUTs and coarse-grained resources; C: Connection boxes;

S: Switch boxes). 39

2.2 Design flow of FPGAs. 41

2.3 Design flow of FPGA with OpenSPL and OpenCL. 43

2.4 Model-based design flow. 44

2.5 Sets of points aligned on a series of contours and a set of points located on an

arbitrary form of mesh. 48

2.6 (a) A virtual tube bounded by a series of contour denotes the configuration of

an endoscope; (b) The corresponding three-dimensional distance map in grids of

86x48x43. 49

2.7 An overview of the air traffic control problem. 53

2.8 Aircraft model. 54

3.1 Various sets of points aligned on a series of contours; A set of points located on

an arbitrary form of mesh. 60

23

24 LIST OF FIGURES

3.2 Data structure: NS points are processed in a group. Each point of a group is

iterated for NC times. Data are streamed in an order as indicated by the arrows. 67

3.3 System architecture: Solid lines represent communication on the FPGA board

while dotted lines represent the bus connecting the reduced precision data-path

on FPGA to the high precision data-path on CPU. 68

3.4 Memory array stores contour indices for re-computation. 70

3.5 Computation time and the level of parallelism versus different number of man-

tissa bits. 74

3.6 Ratio of re-computation and the number of points processed in 1 ms versus

different number of mantissa bits. 76

3.7 Computation time for a PQ update with 100 contours versus the number of points. 78

4.1 Particle set reduction. 84

4.2 Heterogeneous reconfigurable system . 86

4.3 A particle stream. 86

4.4 FPGA kernel design. 87

4.5 Power consumption of the reconfigurable system over time. 91

4.6 Compressing particle stream: After the resampling process, some particles are

eliminated and the remaining particles are replicated. Data compression is ap-

plied so that every particle is stored and transferred once only. 93

4.7 Number of particles and components of total computation time versus wall-clock

time. 97

4.8 Localisation error versus wall-clock time. 98

4.9 Effect on the data transfer time by particle stream compression. 99

LIST OF FIGURES 25

4.10 Power consumption of reconfigurable system (RS), CPU and GPU in one time-

step, notice that the computation time of the CPU system exceeds the 5-second

real-time requirement . 101

4.11 Run-time versus energy consumption of reconfigurable system (RS), CPU and

GPU . 102

5.1 Design flow (Compile-time and run-time) for SMC applications: Users only cus-

tomise the application-specific descriptions inside the dotted box. 106

5.2 (a) Design of the SMC computation engine: Solid lines represent data-paths while

dotted lines represent control paths; (b) Data structure of particles represented

by three data streams. 111

5.3 FPGA kernel design: The blocks that require users’ customisation are darkened.

The dotted box covers the blocks that are optional on FPGAs. 112

5.4 Parameter space of robot localisation system (NA=8192, S=1): The dark region

on the top-right indicates designs which fail localisation accuracy constraints,

while those on the bottom-left indicates designs which fail real-time requirements.117

5.5 Power consumption of the reconfigurable system with reconfiguration to low-

power mode during idle . 119

5.6 Illustration of automatic parameter optimisation (adapted from [1]): (a) Sam-

pling parameter sets; (b) Building surrogate model; (c) Calculating expected

improvement; (d) Moving to the point offering the highest improvement. 120

5.7 Number of particles and components of total computation time versus wall-clock

time . 123

5.8 Power consumption of reconfigurable system, CPU and GPU in one time-step . 123

6.1 Thesis contributions. 129

6.2 Image-guided catheterisation: Perform PQ based on a beating heart model,

where light blue bubbles represent the control points registered on the surface

and yellow spheres indicate the control points forming the centre line of the

pathway [2]. 131

6.3 Altera SOC which integrates an ARM-based hard processor, peripherals, memory

interfaces and FPGA fabric [3]. 131

6.4 Different schemes to put FPGA to sleep. 132

6.5 (a) Best-effort adaptive scheme described in Chapter 4; (b) Just-in-time adaptive

scheme. 133

26

Glossary

AMBA Advanced Microcontroller Bus Architecture. 130

ASIC Application-Specific Integrated Circuit. 132

CLB Configurable Logic Block. 39

CPU Central Processing Unit. 31–36, 42, 43, 66, 68, 70–77, 79, 81, 83, 85, 88, 89, 91, 92,

95–103, 105, 108–110, 112–115, 118, 120–124, 126–128, 130, 133

DCL Domain customisable Language. 45

DFS Dynamic Frequency Scaling. 132

DMA Direct Memory Access. 72

DRAM Dynamic Random-Access Memory. 69, 71, 72, 85, 89, 92, 115

DSL Domain Specific Language. 45

DSP Digital Signal Processor. 30, 39, 41, 42, 73, 95, 121, 126

FIFO First In, First Out. 68, 69, 107

FPGA Field-Programmable Gate Array. 29–45, 48, 52, 56–58, 63, 66–77, 79–86, 88–92, 94,

95, 98–105, 107–109, 112–118, 121–128, 130, 132, 133

GPU Graphics Processing Unit. 33–36, 43, 73, 75–77, 85, 96, 98–100, 102, 103, 105, 120–122,

124, 126–128

27

HDL Hardware-description Language. 35, 41–43

HLS High-level Synthesis. 42, 44, 56

HPC High-Performance Computing. 30, 34, 40, 43, 55

I/O Input/Output. 30, 39, 126, 127

IMH Independent Metropolis-Hastings. 99

IP Intellectual Property. 44, 126

KLD Kullback Leibler Distance. 51, 52

LUT Look-Up Table. 38, 39, 41, 73, 95, 112, 121, 123

PQ Proximity Query. 34, 36, 46–48, 57–59, 63, 64, 66, 67, 73, 75, 76, 127, 129, 130

RAM Random-Access Memory. 38, 39, 41, 95, 121, 123

RMSE Root-Mean-Square Error. 115, 116, 121, 122

RTL Register-transfer-level. 41–43, 45, 132

RTOS Real-time Operating System. 30, 130, 133

SMC Sequential Monte Carlo. 35–37, 49–54, 79, 80, 94, 96, 97, 104–108, 116, 117, 119, 120,

125, 127, 128, 133

SoC System on a Chip. 39, 130, 133

WCET Worst Case Execution Time. 31

28

Chapter 1

Introduction

1.1 Motivation

Real-time computing is defined to be a system that must be able to respond to input stimulus

in finite intervals. Failing a deadline can cause degraded quality of service and even a total

system failure. Real-time needs can be extremely hard when a large amount of data have to be

processed in a short period of time. Nowadays, many real-time applications push processing

systems to their limit with the required response time. Reconfigurable systems have potential

to play an important role in high-performance real-time applications as they provide predictable

timing performance, the ability to perform highly parallel calculations, better solution quality

and lower power consumption.

Reconfigurable systems are computing systems which combine the flexibility of software with

the high performance of hardware by deploying Field-Programmable Gate Array (FPGA) tech-

nology. The structure of a reconfigurable system can be changed by the end-user after the

manufacturing process or even at run-time. The development of reconfigurable systems has

been driven largely by FPGAs, which are semiconductor devices with prefabricated logic and

routing resources. The functionality and interconnection of an FPGA can be reconfigured

with any new design multiple times. The reconfiguration enables application-specific tuning

of designs and their adaptation to new standards. This reconfigurability make FPGAs suited

29

30 Chapter 1. Introduction

to application specialisation without the high cost of making custom silicon. In recent years,

there has been a significant increase in the size of FPGAs. Modern state-of-the-art FPGAs

contain numerous programmable logic cells, Digital Signal Processors (DSPs), memory blocks,

high-throughput transceivers, peripheral Input/Output (I/O), customisable IP blocks and even

micro-processor cores [4,5]. These components enable higher integration level, faster execution

speed and lower power consumption through tailor-made data-paths, increased fine-grained

parallelism and better memory utilisation. In addition, FPGA technology allows arbitrary

precision floating-point arithmetic. This allows for reduction of the circuit area or increases

parallelism without significant impact to the accuracy of the results [6, 7]. FPGA devices

also support dynamic run-time reconfiguration enabling applications demanding adaptive and

flexible hardware.

The advantages mentioned above facilitate the use of FPGAs in High-Performance Comput-

ing (HPC) and real-time computing. HPC has stringent speed, space and power consumption

requirements. Examples include weather forecasting, brain simulation and molecular dynamics

simulation. In the last decade, researchers have extended the scope of FPGAs from prototyp-

ing to accelerating a wide variety of software, such as Monte Carlo simulation [7] and video

processing [8]. FPGAs show a lot of promise for HPC. Execution time and power consumption

of applications running on FPGAs can be improved by several orders of magnitude compared

to state-of-the-art microprocessors [6–10].

Real-time systems are found in a wide range of application areas, from simple domestic appli-

ances to financial systems, large scale process control and safety critical avionics. The required

response times of real-time applications varies from microseconds (high-frequency trading [11]),

milliseconds (image-guided medical surgery [12]) to seconds (robotics [13]) and even minutes

(air traffic management [14, 15]). FPGAs are considered as a platform for embedded real-time

applications where software tasks running on micro-processors coexist with hardware tasks

running on reconfigurable logic [16–19]. However, these implementations are software-based

which means that multiple real-time tasks are managed by dedicated Real-time Operating Sys-

tem (RTOS) for reconfigurable devices. Real-time tasks running on micro-processors have to

consider problems resulting from complex architectures. Caches, branch prediction, out-of-

1.2. Research Challenges and Contributions 31

order execution and pre-emption of tasks bring difficulties to maintain deterministic behaviour.

Extensive research has been conducted on micro-processor-based real-time applications regard-

ing time predictability, Worst Case Execution Time (WCET), task scheduling and manage-

ment [20–22].

This thesis aims to study real-time systems from a different perspective, in particular about

making use of the recent advancements in FPGA technology to bridge the gap between high

performance and real-time computing. Essentially this research focuses on hardware-oriented

approaches that utilise special-purpose reconfigurable hardware being tailored for target appli-

cations.

1.2 Research Challenges and Contributions

The objective of this thesis is to optimise reconfigurable systems, particularly FPGAs, so as to

improve the performance of real-time applications, and make the experience of implementing

real-time applications on reconfigurable systems more convenient and effective. The contribu-

tions of this thesis are based on an heterogeneous reconfigurable system. Heterogeneous means

that more than one type of compute unit are used to perform computation. In this thesis,

heterogeneous reconfigurable system refers to one consisting of multiple FPGAs and Central

Processing Units (CPUs). There are two different processing topologies that describe the dis-

tribution of workload between FPGAs and CPUs. Pre-processing topology in Figure 1.1(a)

performs intensive number crunching in FPGAs prior to processing with CPUs, which only

handle the non-compute-intensive calculations. Co-processing topology in Figure 1.1(b) splits

the workload to take advantage of the different characteristics between FPGA and CPU. In

this topology, FPGAs act as real-time co-processors having deterministic timing. The three

main contributions made towards this goal are:

1. A precision optimisation approach that allows designers to maximise parallelism and

throughput subject to real-time requirements, without having to sacrifice accuracy of

computed solutions. Aspects regarding streaming data structure, memory architecture,

32 Chapter 1. Introduction

and hardware-friendly function transformation are also discussed. This work demon-

strates the first type of heterogeneous processing topology as illustrated in Figure 1.1(a),

where FPGAs perform the most intensive processing and CPUs handle the final output

of results. This work is published in paper [23], which leads to more effective use of

arbitrary precision floating-point arithmetic offered by FPGA technology.

2. An adaptive technique that allows real-time system to reconfigure its hardware, software

and algorithm at run-time for optimised performance while satisfying all the real-time con-

straints. This contribution employs the second type of heterogeneous processing topology

as shown in Figure 1.1(b), numerically intensive processing is allocated to the FPGA.

In papers [24, 25], we showed how FPGA technology enables dynamic workload man-

agement, frequency scaling, and bit-stream reconfiguration that lead to reduced energy

consumption as well as better resource utilisation on real-time systems.

3. A design flow for generating efficient implementation of reconfigurable designs and reduc-

ing the development effort. The above benefits are reflected by fewer lines of user-written

code and fewer design configurations for performance analysis. The proposed design flow

consists of a parametrisable computation engine and a software template, which max-

imise design reuse and minimise customisation effort. High-level functional description

of the application is mapped to reconfigurable system automatically. Design parameters

that are critical to the performance and to the solution quality are tuned using a ma-

chine learning algorithm. This process automatically maximises accuracy or minimises

computation time without violating real-time constraints. This contribution is published

in paper [26], which enables efficient mapping of a variety of designs to reconfigurable

hardware.

The following three subsections present a brief overview of each contribution and the challenges

involved. More details are presented in the later chapters.

1.2. Research Challenges and Contributions 33

FPGAs CPUs
input output

(a)

FPGAs CPUs

input output
Bus

(b)

Figure 1.1: Illustration of heterogeneous processing topologies: (a) Pre-processing by FPGAs;
(b) Co-processing between FPGAs and CPUs.

1.2.1 Precision Optimisation of Reconfigurable Data-paths

The first contribution of this thesis is a precision optimisation approach to maximise real-time

performance of reconfigurable systems.

FPGAs have abundant fine-grained resources but the clock speeds of FPGAs are commonly 10

to 30 times slower than CPUs and Graphics Processing Unit (GPU), therefore the performance

gains in FPGAs are obtained by designing algorithms such that many independent operations

can occur simultaneously. A crucial step to unleash competitive performance of FPGAs is

to provide massive parallelism and effective use of data. By employing significant data-path

parallelism and deep pipelines where inputs and outputs continually stream through each cycle,

hundreds or even thousands of operations are executed on each cycle of FPGAs to outweigh

the slow clock frequencies. However, as each data-path requires replication of circuits and deep

pipelines need numerous flip-flops, resource usage and bandwidth requirement are often the

performance limitation for FPGA implementations [27].

Currently, FPGAs have the ability to support customisable data-paths with different precisions.

Reduced precision data-paths consume less logic resource and hence allow for a higher degree of

parallelism. Using reduced precision reduces I/O bandwidth and allows higher clock frequencies.

Unfortunately, all the mentioned benefits come with an expense of lower accuracy of results.

34 Chapter 1. Introduction

There are trade-offs between performance and accuracy in the implementation of data-paths.

Chapter 3 describes how reduced precision is applied to reconfigurable systems. A novel data

structure and memory architecture are developed. They support reduced precision data-paths

across multiple FPGAs. They maintain the accuracy of final results by re-computing a small

fraction of FPGA outputs on CPUs. This work employs the pre-processing topology (Fig-

ure 1.1(a)), and the data-paths on FPGAs compute and filter most of the data before sending

the filtered data to CPUs for re-computation.

The proposed methodology is applied to an image-guided surgical robot application which

employs the Proximity Query (PQ) process. A functional transformation further optimises the

data-path for hardware-friendly implementation. Implementation in a reconfigurable platform

with four FPGAs shows 58 times speedup over a 12-core CPU system, 3 times speedup over

a GPU system, and 3 times speedup over the same reconfigurable platform without precision

optimisation.

1.2.2 Run-time Adaptation of System Configuration

The second contribution of this thesis is an approach that adapts the reconfigurable system at

run-time for reduced computation workload and energy consumption.

Power and energy efficiency is becoming a major consideration for HPC systems. For example,

the Green500 list [28] provides a ranking of the energy efficiency of world-wide supercomput-

ers. CPUs are equipped with various technologies to reduce power dissipation [29, 30]. GPUs

also have different power modes [31, 32]. As FPGAs are increasingly being deployed for HPC

applications, power dissipation of FPGAs is also a concern. Apart from traditional power sav-

ing techniques such as clock gating and dynamic frequency/voltage scaling existing on other

platforms, FPGAs’ run-time reconfigurability could be exploited as an aggressive power saving

technique. The power consumption of an FPGA depends on the circuit size and the clock fre-

quency. Larger circuit uses more routing tracks which bring parasitic capacitance, and higher

clock speed increases the switching activity on the routing tracks which causes significant power

1.2. Research Challenges and Contributions 35

dissipation.

Chapter 4 explores an adaptation approach to reduce FPGA’s energy consumption by run-time

reconfiguration. In particular, Sequential Monte Carlo (SMC) applications are studied as they

facilitate adaptation at algorithmic and system levels. At algorithmic level, an adaptive SMC

algorithm which adjusts the computation workload at run-time while maintaining the quality

of results is proposed. At system level, run-time reconfigurability of FPGAs is used to switch

the real-time system between computation mode and low-power mode. Low-power mode lowers

the dynamic power by reducing circuit size and clock frequency. Compared to a non-adaptive

and non-reconfigurable system, the proposed approach reduces idle power by 25-34% and the

overall energy consumption by 17-33%.

This work employs the co-processing topology (Figure 1.1(b)), the FPGAs handle the compu-

tation which can be fully-pipelined, while the CPUs deal with non-sequential data access.

1.2.3 Design Flow for Domain-specific Reconfigurable Applications

The final contribution of this thesis is the development of a design flow that reduces the devel-

opment effort of real-time applications on reconfigurable systems.

Although FPGAs show promising performance advantage for high-performance real-time sys-

tems, FPGA accelerators have not yet been accepted by mainstream application designers [27].

Low productivity and long design time have been a longstanding barriers to a more wide-spread

usage. The design complexity of FPGA applications far exceeds that of CPUs and GPUs, and

hence raises development cost and deter user acceptance. Traditionally, FPGA applications are

developed using Hardware-description Languages (HDLs). Writing HDLs is timing-consuming

and requires digital design expertise which is not common to mainstream designers. In ad-

dition, designers have to perform numerical analysis to determine an appropriate precision in

order to achieve an FPGA’s full potential, because FPGAs often achieve order of magnitude

improvements when using fixed-point, integer, or bit-level operations. This numerical analysis

process significantly increases design time. Another productivity bottleneck is lengthy compila-

36 Chapter 1. Introduction

tion times due to the complexity of placement and routing. Common software design practices

based on rapid compilation are no longer feasible for reconfigurable system design.

In Chapter 5, a design flow is proposed to address the above mentioned challenge. This chap-

ter extends the SMC reconfigurable system described in Chapter 4 and focuses on making

the system parametrisable for a wide variety of SMC applications. In other words, it makes

Chapter 4’s reconfigurable system easier and more accessible to designers, especially those who

lack hardware design experience. Through templating the SMC structure, the proposed de-

sign flow enables efficient mapping of applications to multiple FPGAs. To reduce design space

exploration effort, a machine learning algorithm based on surrogate modelling is used to tune

design parameters that are crucial to the performance and solution quality. The design flow

demonstrates its capability of producing reconfigurable implementations for a range of SMC

applications that have significant improvement in speed and in energy efficiency over optimised

CPU and GPU implementations.

1.3 Thesis Organisation

Chapter 2 offers a detailed background on reconfigurable architectures and systems, design

flow which includes synthesis tools and programming languages, and applications of reconfig-

urable technologies on real-time systems. Chapter 3 describes the first contribution, which

demonstrates how precision optimisation is applied to reconfigurable real-time systems. The

proposed methodology is applied to an application in imaged-guided surgical robot based on

PQ process. Chapter 4 presents the second contribution of this thesis, which describes the use

of run-time reconfigurability of FPGAs to adapt real-time systems for reduced power and en-

ergy consumption. Chapter 5 details the third contribution, which provides a design flow for

automatically generating efficient implementation of reconfigurable designs. Lastly, Chapter 6

concludes this thesis, and presents the remaining outstanding challenges. Figure 1.2 shows how

the three contributions of this thesis link together. Chapter 3 and 4 describe techniques to

optimise reconfigurable real-time systems. Chapter 5 introduces a domain-specific design flow

1.3. Thesis Organisation 37

to address the long-standing programmability issues of FPGA.

Run-time Adaptation

(Chapter 4)

Design Flow

(Chapter 5)

Precision Optimisation

(Chapter 3)

Reconfigurable Real-time Systems

Figure 1.2: Thesis organisation.

Parts of this thesis have been published in [23–26]. During the course of this work, several

related papers were also published. Papers [33–35] describe details concerning the acceleration

of air traffic management systems, one of the SMC applications being studied in Chapter 5.

Paper [1] presents details of surrogate modelling that enable machine learning approach in

Chapter 5. In addition and in support of the work presented in this thesis, papers [36,37] present

initial work regarding the adaptive SMC method, which leads to the proposal in Chapter 4.

Paper [38] provides a simple benchmarking platform for real-time systems. Neither of these

contributions are described in this thesis.

Chapter 2

Background and Related Work

2.1 Introduction

This chapter begins with a brief overview of reconfigurable systems in Section 2.2. The under-

lying system architecture and the design flow that maps designs to this system are illustrated.

Real-time systems and their typical applications are covered in Section 2.3. Section 2.4 provides

a summary.

2.2 Reconfigurable Systems

2.2.1 Architecture

The underlying technology of reconfigurable system is FPGA. In order to perform as functional

circuits, FPGAs provide numerous fine-grained resources, namely Look-Up Tables (LUTs) im-

plemented in small Random-Access Memorys (RAMs). LUTs implement combinational logic

by storing the corresponding truth table and using the logic inputs as the address into the

LUTs. FPGAs enable sequential circuits by providing registers along LUT outputs. By pro-

viding hundreds of thousands of LUTs and registers, FPGAs can implement massively parallel

38

2.2. Reconfigurable Systems 39

circuits. Modern FPGAs also have coarse-grained resources such as Configurable Logic Blocks

(CLBs), multipliers, DSPs, on-chip RAMs, and even microprocessor cores. Microprocessor

cores can be dedicated hard processor, such as ARM Cortex A9 in Altera System on a Chip

(SoC)-FPGA [4] and Xilinx Zynq [5]. In addition, designers can use the LUTs to implement

soft processors, such as Altera’s Nios II [39] and Xilinx’s MicroBlaze [40].

To combine these resources into larger circuits, FPGAs provide reconfigurable interconnect. In

between each row and column of resources, FPGAs contain numerous routing tracks, which are

wires carrying signals across the chip. Connection boxes provide programmable connections

between resources I/O and routing tracks, while switch boxes provide programmable connec-

tions between intersecting routing tracks. Such programmable connections allow a signal to be

routed to any destination on the FPGA chip. This architecture is called an island-style fabric

as shown in Figure 2.1.

L C L C L

C S C S C

L C L C L

C S C S C

L C L C L

C S C S C

Figure 2.1: Island-style FPGA (L: LUTs and coarse-grained resources; C: Connection boxes;
S: Switch boxes).

The reconfigurability of FPGAs leads to an unique feature which allows circuitry to be se-

lectively updated on the fly, without disturbing the execution of the remaining system. This

technique is referred to as run-time reconfiguration or dynamic reconfiguration. In [41], a

40 Chapter 2. Background and Related Work

time-multiplexed FPGA is proposed. The FPGA can store eight configurations and switch

between each of them in 30ns. The ability of changing the entire configuration of the FPGA

in a single cycle allows the FPGA to emulate a single large design, or to share the resource to

run several independent designs. However, they express concern about the power consumption

when the device is reconfigured frequently, though the device has not yet been fabricated and

tested. Another dynamically reconfigurable architecture is proposed in [42]. To accommodate

eight configurations for multi-context, 35% of area penalty is incurred. Although the idea of

time-multiplexing is intriguing, the above mentioned architectures do not identify any killer

application which can benefit from this ability.

FPGAs are used to create specialised circuits for tailored toward specific applications, and have

the potential to provide significant performance improvement compared to general-purpose mi-

croprocessors. On the other hand, general-purpose microprocessors are easier to program and

have higher binary compatibility among different processor models. Tightly-coupled reconfig-

urable coprocessors are proposed. Garp [43] has an FPGA located on the same die as the

processor. While the FPGA provides coarse-grained acceleration such as pipelined and paral-

lelised loops, the main processor takes care of all other computations. The programmability

of the FPGA remains a challenge when users have to manually specify the configuration of

logic block and connections. Chimaera [44] targets a more fine-grained acceleration by collaps-

ing performance-critical instructions into specific operations for an on-chip reconfigurable unit.

The data-path of the reconfigurable unit is tailored for those specific operations, thus offers

performance improvement.

FPGAs have also been employed in HPC serving as accelerators in computing clusters. There

exists a number of reconfigurable architectures which target compute-intensive applications.

Convey HC-2 Computer [45] integrates an FPGA-based reconfigurable co-processor with Intel-

based x86 host. The co-processor’s FPGAs execute compute-intensive operations which take a

large component of an application’s run-time. The HC-2 system has a memory subsystem and

crossbar which provide a highly parallel and high bandwidth (80 GB/s) connections between

the FPGAs and the corresponding physical memory. It also employs a scatter-gather dual inline

memory modules (SG-DIMMs) to increase performance of random memory access. Meanwhile,

2.2. Reconfigurable Systems 41

Maxeler Technologies develop a series of reconfigurable systems which consist of Intel-based

x86 host and FPGA-based data-flow engines [46]. Their MPC-C500 machine can deliver over

400 GFLOPS computation speed and over 35GB/s of bandwidth to external physical memory.

To leverage the advantages of FPGAs for hardware acceleration, Chow et al. [6] proposed a

mixed precision methodology. There are studies on bit-width optimisation which uses min-

imum precision in a data-path given a required output accuracy. Examples include interval

arithmetic [47], affine arithmetic [48, 49] and polynomial algebraic approach [50]. However, a

reduction of precision in any stage within a data-path will result in a loss in output accuracy

which is uncorrectable. These studies require the use of accuracy models to relate output

accuracy with the precisions of data-path.

2.2.2 Design Flow

To enable implementation of applications on FPGAs, FPGA tools generally support a design

flow as shown in Figure 2.2. Firstly, synthesis takes source files written at Register-transfer-level

(RTL), typically written in HDL, and converts them to design implementation in terms of logic

gates. Secondly, technology mapping converts all logic gates into device resources such as

LUTs, DSPs and block RAMs. Thirdly, placement maps each technology-mapped component

onto physical locations of the chip. Finally, routing programs the interconnect to implement

all connections in the circuit and generates a bit-stream which is downloaded to configure the

target FPGA.

Synthesis

Design in HDL

Technology

Mapping
Placement Routing

FPGA Bit-stream

Figure 2.2: Design flow of FPGAs.

42 Chapter 2. Background and Related Work

There are two major programming models for FPGAs. The most common model manually

converts the code into a semantically equivalent RTL circuit, which designers typically specify

using HDLs such as VHDL and Verilog. Designing RTL circuits is time consuming. Designers

must specify the entire structure of the data-path, define control for components, and man-

age data movement from inputs to outputs which involve devices such as DDR memory, PCI

Express bus, ethernet, and so on. Such complexity leads researchers to work on High-level Syn-

thesis (HLS) tools which synthesise algorithmic descriptions from high-level languages, such

as SystemC and Ansi C/C++, to RTL circuits. Commercial HLS tools become increasingly

common. Example includes Xilinx’s Vivado HLS [51], Impulse Accelerated Technologies’ Im-

pulse C [52], Calypto’s Catapult C [53], Mentor Graphics’ Handel-C [54], IBM’s Lime [55],

Bluespec [56], OpenSPL [57, 58], OpenCL in Altera FPGAs [59], and MathWorks’ Simulink

(via HDL Coder [60], DSP Builder [61] and System Generator [62]). Open-source tools such as

LegUp [63] are also gaining researchers’ attention.

As mentioned earlier, tightly-coupled reconfigurable coprocessors are integrated to CPUs, to

achieve higher performance. Hardware-software co-design approaches are proposed to exploit

these architectures. In [64], system-level applications specified in C are partitioned onto CPU

and FPGA Instruction-level parallelism is extracted for hardware acceleration, and the configu-

ration time of FPGA is considered. In [65], a multi-objective approach is developed which assign

multi-rate and real-time tasks to systems consisting of FPGAs and processors. The partition-

ing algorithm is able to optimise schedule length and power consumption simultaneously. As

the run-time overhead of reconfiguring FPGAs is significant, early partial reconfiguration and

incremental reconfiguration techniques are proposed in [66]. The reconfiguration time is hidden

in the slack interval when the software part is executing. The approaches mentioned above

assume the FPGA is too small to fit in the entire application, thus run-time reconfiguration is

exploited to utilise the FPGA as much as possible. However, FPGAs nowadays have plenty of

logic resources, and even multiple FPGAs work together for an application. The application

can be extensively parallelised with deep pipelines, and makes use of coarse-grain resources

such as DSP and floating-point units [67] for arithmetic operations in custom bit-width. New

approaches are needed for the latest architectures.

2.2. Reconfigurable Systems 43

Heterogeneous computing is becoming more popular, many HPC systems use a combination

of off-the-shelf devices including CPUs and FPGAs. OpenSPL and OpenCL are two stan-

dards which have been proposed to provide a framework for writing programs that execute

across FPGAs, CPUs and GPUs. Figure 2.3 illustrates the conceptual design flow of FPGA

with OpenSPL and OpenCL. Both OpenSPL [57] and OpenCL include software-like program-

ming language for developing kernel (functions that execute on hardware devices) as well as

application programming interfaces that allow kernels communicate with software executable

running on micro-processors. OpenSPL, which stands for Open Spatial Programming Lan-

guage, is a programming language focusing on data-flow computing. Maxeler Technologies’

MaxCompiler [58] is a commercial tool which supports OpenSPL and a series of reconfigurable

HPC systems. Traditionally, designers targeting different FPGAs must make significant board-

specific changes to RTL circuits which are described at low-level. OpenSPL simplifies the effort

of customising an FPGA application for a specific model of FPGA by automatically generating

interfaces such as buses between CPUs and FPGAs, as well as controller for external memory.

In addition, OpenSPL provides functional level simulation which reduces the debugging effort

on RTL-level code simulation. On the other hand, OpenCL, which stands for Open Computing

Language, is being promoted by Altera to target software developers who are new to FPGAs.

As the requirement of hardware knowledge is low compared to traditional HDL development,

OpenCL enables designers focus on high-level algorithm and software system design.

Kernel

Program

C Program

Bus

OpenSPL/

OpenCL

Compiler

Executable

Kernel

Implementation

CPU

FPGA

Figure 2.3: Design flow of FPGA with OpenSPL and OpenCL.

44 Chapter 2. Background and Related Work

MathWorks promote HLS with a model-based design flow [68, 69]. As shown in Figure 2.4,

designers first simulate and verify operations in the Simulink development environment, then

FPGA Intellectual Property (IP) cores are generated from the Simulink models using HDL

Coder, while software executables for ARM processor are compiled using Embedded Coder.

The design flow also includes various board-support-packages which generate device-specific

interfaces automatically.

Environment

Model

Algorithm

Algorithm

Environment

FPGA IPs

AXI Bus

ARM

Processor

Simulink SoC FPGA

Embedded

Coder

HDL Coder

Simulation Implementation

Figure 2.4: Model-based design flow.

Even though HLS tools ease the development effort of building parallelised applications that

fully take advantage of FPGA, designers still suffer from long synthesis time which makes design

space exploration very inefficient. Traditional software techniques relying on rapid recompila-

tion are no longer feasible. The design space exploration of reconfigurable designs requires sub-

stantial effort from users who have to analyse the application, create models and benchmarks,

and subsequently use them to evaluate the design. Sometimes such an approach is infeasible

as numerical properties cannot result in a closed-form analytical model. One can proceed with

automated optimisation based on an exhaustive search through design parameters, yet even au-

tomation of design space exploration is problematic because of the large number of evaluations

2.3. Real-time Systems 45

needed. In dealing with large design space, an optimisation approach [70] is developed based

on Efficient Global Optimisation (EGO) [71]. It has a surrogate model consisting of both a

Gaussian process regressor [72] and a Support Vector Machine (SVM) classifier [73]. By using

the surrogate model, the algorithm allows for automated design space exploration. The classi-

fication mechanism employed in the optimisation approach allows for constrained optimisation

and it is particularly designed to cope with reconfigurable designs parameter tuning. This work

is extended in [1] to offer automatic and calibration free optimisation.

2.2.3 Domain Specific Languages

At present, FPGAs are mainly programmed in RTL using Verilog or VHDL. The long develop-

ment times and requirement for low-level, hardware-centric design expertise have served as a

historical barrier for programmers and software engineers. RTL design is error prone and non-

portable. Domain Specific Languages (DSLs) or Domain customisable Languages(DCLs) are

being promoted to increase programmer productivity and code quality. DSLs allow application

to be described using abstractions that are closer to a problem domain.

GraphGen [74] is a vertex-centric framework that targets FPGA for graph computations. The

framework accepts a vertex-centric graph specification and automatically compiles it onto an

application-specific synthesised graph processor. The graph processor is customisable by user-

defined graph instructions. There is also a special-purpose memory subsystem for graph compu-

tations. In the area of packet parsing, G [75] and PP [76] are high-level programming languages

which can be compiled to produce high-speed FPGA-based packet parsers.

2.3 Real-time Systems

A system is defined as being real-time if it is required to respond to an input stimulus within

a finite and specified time interval. The stimulus could either be an event at the interface to

the system or an internal signal. The correctness of a real-time system is based on both the

46 Chapter 2. Background and Related Work

correctness of the outputs and their timeliness. However, the system does not have to be fast.

A hard real-time system should guarantee a response to events within a timing bound which

is normally referred to as a deadline. Missing an operation deadline can lead to catastrophic

effects such as a total system failure. Soft real-time system is a loosen form where exact response

time is not critical, but missing an operation deadline can cause degraded quality of service.

In summary, real-time systems must have the following properties to support critical applica-

tions [77]:

• Timeliness: Output values are produced before the deadlines.

• Robustness: The system should work when subject to a peak load.

• Predictability: The system behaviour is known before it is put into operation.

This thesis focuses on accelerating high performance real-time applications using reconfigurable

systems. To ensure the implementations have the above-mentioned properties, we will discuss

performance models and measurement-based approaches which analyse the worst case timing

behaviour. In the following chapters, we will apply reconfigurable technologies to three im-

portant real-time applications and shows the benefits of reconfigurable systems to real-time

applications.

2.3.1 Real-time Applications

A. Proximity Query for Image-guided Surgery

Advanced surgical robots support image guidance and force-based haptic feedback for effective

navigation of surgical instruments. Such image-guided robots rely on real-time computing

the intersection or the closest point-pair between two objects in three-dimensional space; this

computation is known as PQ.

PQ has been widely studied in areas such as robot motion planning, haptics rendering, virtual

prototyping, computer graphics, and animation [78]. Robot motion planning is particularly

2.3. Real-time Systems 47

demanding for the real-time performance of PQ [79]. In the past decade, PQ has also been used

as a key task for active constraints [12] and virtual fixtures [80], which are collaborative control

strategies mostly applied in image-guided surgical robotics. The clinical potential of this control

strategy has been demonstrated by imposing haptic feedback [81] on instrument manipulation

based on imaging data [82]. This haptic feedback provides the operator with kinaesthetic

perception for sensing positions, velocities, forces, constraints and inertia associated with direct

maneuvering of surgical instrument within the target anatomy.

Fast and efficient PQ is a pre-requisite for effective navigation through access routes to the

target anatomy [12]. Haptic guidance, rendered based on imaging data, can enable a distinct

awareness of the position of the surgical device relative to the target anatomy so as to prevent

the operator from feeling disoriented within the surrounding organs. Such disorientation could

potentially cause unnoticed major organ damage. Haptic guidance is particularly important

during soft tissue surgery, which involves large-scale and rapid tissue deformations. A high up-

date frequency above 1 kHz is required to maintain smooth and steady manipulation guidance.

Due to its intrinsic complexity and this real-time requirement, PQ is computationally chal-

lenging. Various approaches have been proposed to achieve the required update rate [79, 83],

with objects represented in specific formats such as spheres, torus or convex surfaces. The

only attempts that apply PQ to haptic rendering, while considering explicitly the interaction of

the body with the surrounding anatomical regions, involve modelling the anatomical pathway

or the robotic device as a tubular structure [2, 80]. The computation burden is increased by

the need to compute the placement of anatomical model relative to the robot whose shape is

represented by more than 1 million points.

Fig. 2.5 illustrates two objects acting as inputs to PQ. The tubular object is bounded by a

series of contours Cj ∀j ∈ [1, ..., NC], each of which is outlined by a set of contour points. This

object can be either a luminal anatomy or a robotic endoscope or catheter. Inside the tubular

object, the mesh comprises points which represent the morphological structure of either the

robot or the target anatomy in complex shape. Essentially PQ computes δj, which describes

how much the mesh deviates beyond the volumetric pathway bounded along the contours.

48 Chapter 2. Background and Related Work

Cj

Cj+1

Figure 2.5: Sets of points aligned on a series of contours and a set of points located on an
arbitrary form of mesh.

As shown in Fig. 2.6(a), a series of circular contours fitted along a part of an endoscope, which

passes through the rectum up to the sigmoid colon. These contours form a constraint pathway.

Fig. 2.6(b) shows a distance map in three-dimensional space with 177k grid points. Distance

from every grid point to the endoscope is computed by PQ. The warmer colour, the further the

point is located beyond the endoscope.

There has been previous work on hardware acceleration of board-phase PQ, which involves

detecting collisions between primitive objects, e.g. spheres [83] or boxes [84]. Such an object

can be a bounding volume tightly containing a union of multiple complex-shaped objects. On

FPGAs, the most relevant work is covered by Chow el at. [6]. On the other hand, narrow-

phase PQ, which computes the shortest distance or penetration depth between polyhedra, such

as GJK [85], V-Clip [86] and Lin-Canny [87], are difficult to be accelerated by hardware due

to algorithmic complexity. There is, thus far, no attempt of using FPGA. In addition, such

approaches are restricted to the object represented in convex polyhedra. To this end, a PQ

approach for complex-morphology object [2] is proposed but how it can be incorporated with

FPGA is not elaborated.

2.3. Real-time Systems 49

(a)

(b)

Figure 2.6: (a) A virtual tube (in green) bounded by a series of contour (in red) denotes the
configuration of an endoscope; (b) The corresponding three-dimensional distance map in grids
of 86x48x43.

B. SMC Methods for Robotic and Control

SMC methods, also known as particle filter, are a set of a posterior density estimation algo-

rithms that perform inference of unknown quantities of interest from observations [88]. The

observations arrive sequentially in time and the inference is performed on-line. SMC methods

are often preferable to Kalman filters and hidden Markov models, as they do not require exact

analytical expressions to compute the evolving sequence of posterior distributions. SMC meth-

ods work well for dynamic systems involving non-linear and non-Gaussian properties, and they

can model high-dimensional data using non-linear dynamics and constraints, are parallelisable,

50 Chapter 2. Background and Related Work

and can greatly benefit from hardware acceleration. SMC has been studied in various applica-

tion areas including object tracking [89], robot localisation [90], speech recognition [91] and air

traffic management [15, 92]. For these applications, it is critical that high sampling rates can

be handled in real-time. SMC methods also have applications in economics and finance [93]

where minimising latency is crucial.

SMC keeps track of a large number of particles, each contains information about how a system

would evolve. The underlying concept is to approximate a sequence of states by a collection

of particles. Each particle is weighted to reflect the quality of an approximation. The more

complex the problem, the larger the number of particles that are needed. One drawback of

SMC is its long execution times so its practical use is limited.

In SMC, the target posterior density p(st|mt) is represented by a set of particles, where st

is the state and mt is the observation at time-step t. A sequential importance resampling

algorithm [94] is used to obtain a weighted set of NP particles {s(i)t , w
(i)}NP

i=1. The importance

weights {w(i)}NP

i=1 are approximations to the relative posterior probabilities of the particles such

that
∑NP

i=1w
(i)
t = 1. This process is described in Algorithm 1. A more detailed description can

be found in [88].

1. Initialisation: Weights {w(i)}NP

i=1 are set to the same value, e.g. 1
NP

.

2. Sampling: Next states {s′(i)t+1}
NP

i=1 are computed based on the current state {s(i)t }
NP

i=1. The

states can be simulated forward over the prediction horizon for H sampling intervals.

3. Importance weighting: Weight {w(i)}NP

i=1 is updated based on a score function which

accounts for the likelihood of particles fitting the observation. Within each iteration

of itl outer, the sampling and importance weighting stages are iterated itl inner times

so that those particles with sustained benefits are assigned higher weights. itl inner

increases as a function of idx1, because a larger idx1 implies that the set of particles

reflects a more accurate approximation.

4. Resampling: Particles with small weights are removed and those with large weights

are replicated. This process is repeated for itl outer times in a time-step to address the

2.3. Real-time Systems 51

Algorithm 1 SMC methods.

1: for each time-step t do
2: idx1← 0
3: Initialisation
4: while idx1 ≤ itl outer do
5: idx2← 0
6: itl inner ← f(idx1)
7: for each particle p do
8: while idx2 ≤ itl inner do
9: Sampling

10: Importance weighting
11: idx2← idx2 + 1
12: end while
13: end for
14: idx1← idx1 + 1
15: if idx1 ≤ itl inner then
16: Resampling
17: end if
18: end while
19: Update
20: end for

Table 2.1: SMC design parameters. Dynamic: adjustable at run-time; Static: fixed at compile-
time.

Parameters Description Type

itl outer Number of iterations of the outer loop

Dynamic
itl inner Number of iterations of the inner loop

NP Number of particles
S Scaling factor for standard deviation of noise
H Prediction horizon

Static
NA Number of agents under control

problem of degeneracy [95]. Without resampling, only a small number of particles will

have substantial weights for inference.

5. Update: State st+1 is obtained from the resampled particle set {s(i)t+1}
NP

i=1 via weighted

average or more complicated functions.

Table 2.1 summarises the parameters of the SMC methods described in Section 2.3.1.

Adaptive SMC methods have been proposed to improve performance or quality of state estima-

tion by controlling the number of particles dynamically. Likelihood-based adaptation controls

the number of particles such that the sum of weights exceeds a pre-specified threshold [96].

Kullback Leibler Distance (KLD) sampling is proposed in [97], which offers better quality

52 Chapter 2. Background and Related Work

results than likelihood-based approach. KLD sampling is improved in [98] by adjusting the

variance and gradient of data to generate particles near high likelihood regions. The above

methods introduce data dependencies in the sampling and importance weighting steps, so they

are difficult to be parallelised. An adaptive SMC is proposed in [99] that changes the number

of particles dynamically based on estimation quality. In [36], adaptive SMC is extended to a

multi-processor system on FPGA. The number of particles and active processors change dy-

namically but the performance is limited by soft-core processors. In [100], both a mechanism

and a theoretical lower bound for adapting the sample size of particles are presented.

Acceleration of SMC methods has been studied in applications such as finance, robotics and

control. Applications related specifically to each of the contribution of this thesis are described

below.

Robot Localisation

SMC methods are applied to mobile robot localisation [25, 90]. At regular time intervals, a

robot obtains sensor values, identifies its location and commits a move. The robot needs to be

aware of the locations of other moving objects in the environment.

The sampling stage is described by Equations 2.1 and 2.2:

(
s
′(i)
t

)
=

x
(i)
t

y
(i)
t

h
(i)
t

=

x
(i)
t−1 + δ

′(i)
t cos(h

(i)
t−1)

y
(i)
t−1 + δ

′(i)
t sin(h

(i)
t−1)

h
(i)
t−1 + γ

′(i)
t

, (2.1)

(
r
(i)
t

)
=

δ
′(i)
t

γ
′(i)
t

 =

N (δt, σ

2
a)

N (γt, σ
2
b)

 , (2.2)

where the robot estimates its updated state s′t based on the current known location (xt−1, yt−1),

heading ht−1, and external reference status rt which contains displacement δ′t and rotation γ′t.

Both δ′t and γ
′

t consider the effect of instability during the robot’s movement.

Both δ′t and γ
′

t are subject to Gaussian noises which are modelled as N (δt, σ
2
a) and N (γt, σ

2
b)

2.3. Real-time Systems 53

respectively. Importance weighting is used to calculate the likelihood of a location based on

the observation, i.e. the sensor values.

Air Traffic Management

Air traffic management is crucial to air transport industry. An air traffic management sys-

tem coordinates the movement of aircraft, and ensures safety by maintaining safe separation

distances between aircraft during take-off, landing and cruising. These objectives have to be

carried effectively that ensures air traffic flows smoothly with minimal expenses in terms of

delay, fuel and administration costs. To cope with the growing demand in future air traffic,

the capacity of the airspace has to be increased without compromising safety. However, the

architecture of current air traffic management system relies on human-operated air traffic con-

trol services, which are rigid and saturated, imposes a constraint in the growth of air traffic.

Development of air traffic management aims to provide more accurate predictive information

about aircraft trajectories. The uncertainty of aircraft trajectories can force air traffic control

to use larger separations between aircraft to ensure safety, thus reducing the total number of

aircraft that an airspace can accommodate, increasing the fuel consumption and time of arrival

of aircraft.

SMC methods have been applied to air traffic management [33–35,92,101,102]. At discrete time

intervals, control actions are determined by SMC and applied to adjust aircraft trajectories.

Model predictive control is applied to optimise the air traffic management problem over a finite

time horizon, which allows anticipating future events. Figure 2.7 provides an overview of the

air traffic control problem depicted as a closed loop control system.

SMC Optimisation Aircraft Simulation
Initial Aircraft

Status

Aircraft Controls

Disturbance

Aircraft Status

Figure 2.7: An overview of the air traffic control problem.

54 Chapter 2. Background and Related Work

mg

L

x

z

(a)

mg

L

x

z

D

T

(b)

x

T

D

y

(c)

Figure 2.8: Aircraft model.

Figure 2.8 depicts the model that simulates the dynamic of an aircraft. The major variables

include the aircraft position in 3 dimensional space (x, y, a), true air speed V , aircraft mass m,

heading angle χ, roll angle φ and pitch angle τ . The forces applied to the aircraft are its weight

mg, the engine thrust T , and the aerodynamic forces of lift L and drag D. As illustrated in

Equation 2.3, φt, τt and Tt are control variables which determines the movement of aircraft at

time-step t. They are chosen within permitted range and are summerised as a state st, which

is optimised by SMC. The state is affected by disturbances from varying wind and atmospheric

conditions, therefore, φ′

t, τ
′

t and T ′

t represent variables with the effect of disturbances taken

into account. Then the state adjusts the status of aircraft rt, which are the position (xt, yt, at),

heading χt, speed Vt and mass mt of the aircraft as described in Equation 2.4. Table 2.2

summerises the variables used in air traffic management model.

(
s
′(i)
t

)
=

φ
′(i)
t

τ
′(i)
t

T
′(i)
t

=

N (φt, σ
2
a)

N (τt, σ
2
b)

N (Tt, σ
2
c)

, (2.3)

2.4. Summary 55

Table 2.2: Variables in air traffic management model.

Variables Description

(x, y, a) Aircraft position in 3 dimensional space
V True air speed
m Aircraft mass
mg Aircraft weight
χ Heading angle
φ Roll angle
τ Pitch angle
T Engine thrust
L Lift
D Drag

(
r
(i)
t

)
=

x
(i)
t

y
(i)
t

a
(i)
t

χ
(i)
t

V
(i)
t

m
(i)
t

=

xt−1 + Vt−1 cos(χt−1) cos(τ
′(i)
t)

yt−1 + Vt−1 sin(χt−1) cos(τ
′(i)
t)

at−1 + Vt−1 sin(τ
′(i)
t)

χt−1 + L sin(φ
′(i)
t)/(Mt−1Vt−1)

Vt−1 + (
T

′(i)
t −D

Mt−1
− g sin(τ ′(i)t))

mt−1 − ηT
′(i)
t

, (2.4)

where V
(i)
t ⊂ [Vmin, Vmax], m

(i)
t ⊂ [mmin,mmax], T

(i)
t ⊂ [Tmin, Tmax], φ

(i)
t ⊂ [φmin, φmax], τ

(i)
t ⊂

[τmin, τmax] are constraints.

2.4 Summary

This chapter reviews the architecture and design flow of reconfigurable systems. Reconfig-

urable systems provide high flexibility and performance by customising numerous fine-grained

resources and implementing massively parallel circuits. Therefore, reconfigurable hardware are

seen as co-processors to offload general-purpose micro-processors, and they are used as acceler-

ators in HPC. When applying reconfigurable technologies to real-time applications, challenges

remain in mapping of real-time algorithms to reconfigurable systems. Apart from performance

improvement, the implementations should ensure timeliness, robustness and predictability to

support real-time. The following chapters in this thesis will discuss various approaches to op-

timise reconfigurable systems for real-time applications, and achieve improvement in terms of

56 Chapter 2. Background and Related Work

computation speed, power consumption and quality of solution.

This chapter mentions the issues of the traditional FPGA design flow, such as long synthesis

time and manual design space analysis. Academia and industry have been working on HLS and

domain-specific languages to reduce the development effort of reconfigurable systems. Later

in this thesis, we will demonstrate a domain-specific design flow for real-time applications on

reconfigurable systems.

Lastly, this chapter reviews real-time systems and several related applications, which specifically

require high-performance. Subsequent chapters of this thesis will discuss how these applications

are accelerated by reconfigurable technologies.

Chapter 3

Precision Optimisation of Data-paths

3.1 Introduction

This chapter presents a precision optimisation approach to maximise real-time performance

of reconfigurable systems. The proposed approach is applied to image-guidance of a medical

surgery robot.

PQ is an important compute-intensive and real-time application which requires substantial

acceleration before it can be used in clinical setting. It is because fast and efficient PQ (update

frequency above 1 kHz) is required to maintain smooth and steady manipulation guidance which

is particularly essential for soft tissue surgery having large-scale and rapid tissue deformations.

This real-time requirement, as well as the intrinsic complexity of the algorithm, make PQ

computationally challenging. The computation burden is increased by the need to model the

shape of tissue and surgery robot by tens of thousands of points.

Due to its compute-intensive nature, PQ can greatly benefit from hardware acceleration. How-

ever, the massive amount of floating-point computations constitute a long data-path which

is resource-demanding. Even if we could implement the data-path in an FPGA, the acceler-

ation would be restricted by low parallelism and clock frequency. This challenge limits the

implementation of PQ on an FPGA.

57

58 Chapter 3. Precision Optimisation of Data-paths

In this chapter, we derive a PQ formulation which allows objects to be represented in complex

geometry with points. To leverage the advantages of FPGAs, function transformation elimi-

nates iterative trigonometric functions so that the algorithm can be fully-pipelined. We increase

data-path parallelism by adopting a reduced precision data format which consumes fewer logic

resources than high precision. To maintain the accuracy of results, potentially incorrect out-

puts are re-computed in high precision. We design a novel memory architecture for buffering

potential outputs and maintaining streaming data-flow. We further exploit the run-time re-

configurability of FPGA to optimise precision dynamically. To the best of our knowledge, our

work is the first to apply reconfigurable technology to narrow-phase PQ computation.

The contributions of this chapter are as follows.

• A hardware-friendly PQ formulation for calculating the relative placement of objects mod-

elled by points with complex morphology, which facilitates restructuring of trigonometric

and search-functions to be amenable to parallel implementation in hardware.

• Enhanced parallelism by treating input points as a novel data structure propagating

through pipelines, together with FPGA-specific optimisations such as adapting PQ to re-

duced precision arithmetic, supporting multiple precisions in a novel memory architecture,

and automating precision management with run-time reconfiguration.

The rest of the chapter is organised as follows. Section 3.2 presents our proposed PQ formu-

lation. Section 3.3 discusses the optimisation of PQ for reconfigurable system. Section 3.4

describes the system design that maps PQ to a reconfigurable system. Section 3.5 provides

experimental results and Section 3.6 concludes our work.

3.2 Formulation of PQ

In this section, we derive our modified PQ process which was originally proposed in [2]. The

significance of this modification is to formulate the PQ capable of processing the contours in

complex shapes. As shown in Figure 3.1, PQ allows the analytical measure of the shortest

3.2. Formulation of PQ 59

Euclidean distance between a set of points and a series of segments Ωj (cf. Definition 1) which

is a well-known representation of a complex three-dimensional object [103]. Each segment Ωj is

enclosed by two adjacent contours which are outlined by points arranged in polar coordinates;

hence, it is more flexible than the existing narrow-phase PQs which are only compatible with

convex objects. PQ is also a bounded algorithm as the number of points and contours are fixed

for an implementation.

Definition 1. Each contour is denoted by Cj, ∀j ∈ [1, ..., NC]. A single segment Ωj comprises

two adjacent contours Cj and Cj+1. Pj is the centre of the contour Cj. Mj is the tangent of

centre line of contour Cj.
jωi = [jωxi,

j ωyi,
j ωzi]

T are the contour points, where i = 1, ...,W and

W is the number of points outlining each contour.

Four steps are taken to calculate the point-to-segment distance δj, which is shown in Figure 3.1

as the shortest distance between a point x and the corresponding edge jV2 →
j V3. Before

introducing these steps, we describe the computation using polar coordinates. Given a contour

Cj,
jφi is the polar angle corresponding to contour points jωi. The polar angles of all the jωi

along the contour, i.e. jω1, ...,
j ωW , have to be computed. This computation can be further

simplified by ignoring an axis coordinate. The poles and the contour points are then projected

either on X-Y, Y-Z or X-Z plane based on the following conditions:

if |Mzj| = max (|Mxj|, |Myj|, |Mzj|) ,

jω
′

i = [jω1i,
jω2i]

T = [jωxi,
jωyi]

T , P ′

j = [Pxj, Pyj]
T ,

if |Mxj| = max (|Mxj|, |Myj|, |Mzj|) ,

jω
′

i = [jω1i,
jω2i]

T = [jωyi,
jωzi]

T , P ′

j = [Pyj , Pzj]
T ,

if |Myj| = max (|Mxj|, |Myj|, |Mzj|) ,

jω
′

i = [jω1i,
jω2i]

T = [jωzi,
jωxi]

T , P ′

j = [Pzj , Pxj]
T ,

(3.1)

where jω
′

i is the two-dimensional mapping of jωi, Mj = (Mxj,Myj ,Mzj) is the tangent of centre

line of contour Cj.

Then jφi is calculated as follows:

60 Chapter 3. Precision Optimisation of Data-paths

Figure 3.1: (Left) Various sets of points aligned on a series of contours; (Right) A set of points
located on an arbitrary form of mesh.

jω′

i =
jω

′

i − P
′

j ,
jφi = atan2

(
jω2i, jω1i

)
. (3.2)

The details of atan2 will be explained Section 3.3.1.

Step 1: Find the normal of a plane containing three points: x, Pj and Pj+1:

nj = (Pj − x)× (Pj+1 − x) , (3.3)

where the symbol × denotes a cross product of two vectors in three-dimensional space.

Step 2: Calculate vectors ρj and ρj+1 which are respectively perpendicular to tangents Mj

and Mj+1 and are both parallel to the plane with normal nj .

ρj = nj ×Mj , ρj+1 = nj ×Mj+1. (3.4)

Step 3: Determine a 4-vertex polygon outlined by jV i=1...4 ∈ ℜ
3×1 which is a part of the cross-

section of segment Ωj. This section is cut by a plane containing the point x and the line segment

Pj → Pj+1.

3.2. Formulation of PQ 61

jV 1 = Pj,

jV 4 = Pj+1,

jV 2 = Pj + tj · ρj,

jV 3 = Pj+1 + tj+1 · ρj+1.

(3.5)

At this stage, we need to calculate tj and tj+1 of Equation 3.5. This can be achieved by mapping

the values of ρj to a two-dimensional plane. The two-dimensional mapping of ρj is ρ
′

j.

if |Mzj| = max (|Mxj|, |Myj|, |Mzj|)

ρ′j = [ρ1j, ρ2j]
T = [ρxj, ρyj]

T ,

if |Mxj| = max (|Mxj|, |Myj|, |Mzj|)

ρ′j = [ρ1j, ρ2j]
T = [ρyj, ρzj]

T ,

if |Myj| = max (|Mxj|, |Myj|, |Mzj|)

ρ′j = [ρ1j, ρ2j]
T = [ρzj, ρxj]

T .

(3.6)

Then we calculate jθ, the corresponding polar angle of ρ′j by Equation 3.7:

jθ = atan2 (ρ2j, ρ1j) . (3.7)

A search is performed to find jφi and
jφi+1 such that jφi ≤

jθ ≤ jφi+1. The polar angles jφi

and jφi+1 are calculated from Equation 3.2. The search is bounded to the number of points of

each contour.

Based on the value i obtained from the search, tj, which is used in Equation 3.5, is calculated.

a = [(Pj −
jωi)(

jωi+1 −
jωi)][(

jωi+1 −
jωi)ρ],

b = [(Pj −
jωi)ρ]‖

jωi+1 −
jωi‖

2,

c = ‖ρ‖2‖jωi+1 −
jωi‖

2 − ‖(jωi+1 −
jωi)ρ‖

2,

tj =
a− b

c
.

(3.8)

Step 4: Define the shortest distance to be zero if the point x lies inside the polygon jVi=1...4 on

62 Chapter 3. Precision Optimisation of Data-paths

the same plane. Referring to [104], it can be determined by three variables λi=1,...,3 calculated

as follows:

λi = nj · ψi, i = 1, ..., 3

s.t. ψi = (jVi − x)× (jVi+1 − x).

(3.9)

Here nj denotes the normal defined in Equation 3.3 and ψi denotes the normal of the plane

containing jVi=1...4. For all λi=1,...,3 ≥ 0, the shortest distance δj from point x to the segment Ωj

is assigned to zero such that δj(x) = 0. Otherwise δj(x) will be considered as the distance from

the point x to the line segment jV2 →
j V3. Referring to [105], such a point-segment distance

in three-dimensional space can be calculated as shown in Equation 3.10:

jµ =
(jV2 − x) · (jV3 −

j V2)

||jV3 −j V2||2
,

χj = (1−j µ)jV2 +
j µjV3,

δj(x) = ||x− χj||.

(3.10)

In consideration of many points and segments, Equation 3.11 generally expresses the deviation

in distance from a single point xi to a series of constraint segments (Ω1, ...,ΩNC−1), where

i = 1, ..., NP , NP is the total number of points belong to the mesh model, NC−1 is the number

of segments involved in the calculation.

iδNC−1 = min (δ1(xi), δ2(xi), ..., δNC−1(xi)) . (3.11)

The point with the maximum deviation, also known as penetration depth, is obtained below:

dNC−1 = max
i=1,...,NP

(iδNC−1(xi)) . (3.12)

3.3. Optimisation for Reconfigurable Hardware 63

3.3 Optimisation for Reconfigurable Hardware

The PQ formulation sketched in the previous section is not entirely hardware-friendly. In this

section we discuss several techniques allowing PQ to benefit from FPGA technology.

3.3.1 Transformation of Trigonometric and Search Functions

The search process in step 3 of PQ (described in Section 3.2) checks whether

jφi ≤
jθ. As described in Equation 3.2 and 3.7, the values of jφi and jθ are calculated as

follows:

jφi = atan2
(
jω2i, jω1i

)
,

jθ = atan2 (ρ2j, ρ1j) .

(3.13)

atan2(a, b) is not a hardware-friendly operator because it requires the calculation of tan−1(a, b)

and then determines the appropriate quadrant of the computed angle based on the signs of

a and b. tan−1(a, b) is resource and timing expensive [106] and not available in many FPGA

libraries, therefore, we transform Equation 3.13 to another form as shown below:

jφi = 2 · tan−1

jω2i√
jω1i

2
+ jω2i

2
+ jω1i

 ,

jθ = 2 · tan−1

 ρ2j√

ρ21j + ρ22j + ρ1j

 .

(3.14)

atan2 is transformed to tan−1. Using tangent half-angle formula,
jφi

2
and

jθ
2
are between −π

2
and

π
2
, therefore, tan−1 can be cancelled out on both sides. As a result, the comparison becomes:

jω2i√
jω1i

2
+ jω2i

2
+ jω1i

≤
ρ2j√

ρ21j + ρ22j + ρ1j
. (3.15)

64 Chapter 3. Precision Optimisation of Data-paths

In this case, square root calculation is much easier to be mapped to hardware.

3.3.2 Applying Reduced Precision

Reduced precision data-paths consume less logic resource at the expense of lower accuracy

of results. To benefit from reduced precision data-paths without compromising accuracy, we

partition the computation of PQ into two data-paths:

• Reduced precision data-path: Compute the deviations based on Equation 3.3 to 3.11.

• High precision data-path: Re-compute those deviations which are not accurate enough

and calculate the penetration depth according to Equation 3.12.

In Equation 3.11, there are NC − 2 comparisons involved to find the minimum value. The

only item of interest is the minimum value iδNC−1, rather than the exact values of every δj(xi).

Based on this insight, we define the comparison operation:

iδ
min
1,...,j = min (δ1(xi), ..., δj(xi)) ,

D = iδ
min
1,...,j − δj+1(xi).

(3.16)

When computed in reduced and high precision, the values of D are denoted as DpL and DpH ,

respectively. DpL might have a flipped sign compared with DpH . We use the following three

steps to make sure the results of Equation 3.11 is correct.

1. Evaluate Equation 3.16 using a reduced precision data format.

2. Estimate the maximum and minimum values of DpH in high precision, i.e. min(DpH) and

max(DpH), as shown in Equation 3.17:

AEpL(DpL) = AEpL(iδ
min
1,...,j) + AEpL(δj+1(xi)),

min (DpH) = DpL − AEpL(DpL),

max (DpH) = DpL + AEpL(DpL),

(3.17)

3.3. Optimisation for Reconfigurable Hardware 65

where AEpL(y) is the absolute error of variable y in reduced precision pL.

AEpL(δj+1(xi)) is computed at run-time. The computation of Equation 3.17 involves 2

multiplication and 3 addition/subtraction only, so the computation complexity is negli-

gible compared to the whole data-path.

3. Determine whether the comparison result should be re-computed or dropped.

Case A: min (DpH) > 0, δj+1(xi) is definitely smaller. No re-computation is necessary.

Case B: max (DpH) < 0, iδ
min
1,...,j is definitely smaller. No re-computation is necessary.

Case C: Cannot determine which value is smaller. Store both values for re-computation

using high precision pH .

In case A and B, the difference between the values is large enough to distinguish the sign of DpH

even in the presence of errors introduced by reduced precision computations. In case C, the

difference is small compared with the uncertainty introduced by reduced precision, and therefore

re-computation in high precision is necessary. The frequency of case C is lower than case A

and B, therefore the gain in computation speed from using reduced precision outweighs the

re-computation overhead. An example of this situation will be discussed later in Section 3.5.3.

3.3.3 Finding the Right Precision

We optimise the error bound AEpL(DpL) based on feedback from run-time environment. Al-

though the error bound can be derived statically [48], the estimated error bound grows pes-

simistically as it propagates along the data-path. Thus, we calculate the error bound using

Equation 3.18:

AEpL(y) = y ·REpL . (3.18)

where y is the run-time data and REpL is the relative error which is profiled using a number of

test vectors relative to a double precision data-path.

66 Chapter 3. Precision Optimisation of Data-paths

On the other hand, we need to decide the precision used in the reduced precision data-paths.

A lower precision increases the level of parallelism and hence increases the throughput of a

reduced precision data-path. However, it increases the ratio of re-computation and the total

run-time. It is important to find an optimal precision for the best performance. When the

properties of data set do not change, the ratio of re-computation can be determined by offline

profiling. Otherwise, when a new data set is applied or the ratio of re-computation exceeds a

threshold, the optimal precision has to be searched at run-time using our proposed method as

shown in Algorithm 2. THcomp,pL , which will be seen in Equation 3.19 in Section 3.4.3, is the

throughput measured at run-time for data-paths implemented in precision pL. The search is

run on the CPU to reconfigure the FPGA with a higher precision. Since only one iteration of

search is executed per time-step, the algorithm is bounded. On a system with multiple FPGAs,

one of the FPGAs is reconfigured to approach the optimal precision over a number of time-steps

while the remaining FPGAs keep the system running.

Algorithm 2 Run-time tuning of precision for system with N ≥ 2 FPGAs

1: Get the list of precisions P
2: THcomp,ptest ← 0
3: repeat
4: THcomp,pL ← THcomp,ptest

5: ptest ← min (p ∈ P)
6: Remove ptest from P
7: Configure FPGA1 with precision ptest, FPGA2...N are not reconfigured
8: Compute PQ and get THcomp,ptest

9: until THcomp,ptest < THcomp,pL

3.4 Reconfigurable System Design

In this section, we present our design which treats input points as a data stream that prop-

agates through the customised system architecture. We also propose an analytical model for

performance estimation.

3.4. Reconfigurable System Design 67

3.4.1 Streaming Data Structure

In PQ, there are NP points to represent a mesh. Referring to Equation 3.10, PQ computes

the shortest distance from each point to the segment boundary defined by NC contours. An

intuitive implementation is to stream one point into the FPGA at the beginning, then the

contours are streamed in the subsequent NC iterations. In other words, Equation 3.3 to 3.11

are iterated for NC − 1 times. However, since every comparison operation in Equation 3.11

takes more than one clock cycle of latency (denoted as Lcmp), the next comparison can only

start after the current one completes. This significantly reduces the FPGA’s throughput for

Lcmp times because the pipeline is not fully filled.

To tackle this problem, we propose a data structure for efficient streaming. As shown in

Figure 3.2, data are streamed in an order as indicated by the arrows. In each iteration of NS

cycles, NS (a number greater than Lcmp) points are processed together as a group. A new

contour value is streamed in at the beginning of each iteration. In this manner, NS points are

being processed together in the pipeline to retain one output per clock cycle.

Nc21

Nc21

Nc21

Contours

1

2

Ns

Points

Group 1

Nc21

Nc21

Nc21

Contours

Ns+1

2

2Ns

Points

Group 2

Figure 3.2: Data structure: NS points are processed in a group. Each point of a group is
iterated for NC times. Data are streamed in an order as indicated by the arrows.

3.4.2 System Architecture

Figure 3.3 shows our proposed system architecture which consists of three major components.

68 Chapter 3. Precision Optimisation of Data-paths

Reduced-precision

Data-path

Comparator

Memory Array

Tracking Units

F
IF
O

Contour Counter

distance value condition

En[0:Ns-1]

In Index

Addr

Out Index

Point Counter

High-precision

Data-path
DRAM

contour

index

point &

contour

values contour

index

point &

contour

values

maximum

deviation

Figure 3.3: System architecture: Solid lines represent communication on the FPGA board while
dotted lines represent the bus connecting the reduced precision data-path on FPGA to the high
precision data-path on CPU.

Data-paths: As mentioned in Section 3.3, we employ reduced precision on FPGA to compute

the deviations. The high precision data-path on CPU manages the data input/output of the

system, re-computes the deviations which are not sufficiently accurate, and then it calculates the

penetration depth based on the minimum deviation. The reduced precision and high precision

data-paths are interfaced by a comparator and a memory architecture as described below.

Comparator: The comparator compares the values of two point-segment distances and de-

termines which one is smaller. For a group of NS points (i.e. x1, x2, ..., xNS
) being processed

together in the pipeline, we use a First In, First Out (FIFO) of length NS where each slot

of the FIFO stores the latest minimum deviation corresponding to a point. Since the point-

segment distances are calculated in reduced precision, according to Section 3.3.2, either one of

the three conditions happens: (A) The distance from the data-path is smaller; (B) The distance

3.4. Reconfigurable System Design 69

stored in the FIFO is smaller; (C) The difference between the two distances is too small, so

re-computation in high precision is necessary.

Memory Architecture: The purpose of the memory architecture is to store the contours

that require re-computation. We design a memory array as shown in Figure 3.4. There are

NS rows, each of which corresponds to the computation of one point which is addressed by a

point counter. Each row consists of NC elements and it serves as a buffer for contours that

may need re-computation. NC elements are needed as in the worst case all the contours have

to be re-computed. Instead of storing the contours in three-dimensional coordinate, we store

their indices so as to save memory space. The indices are counted by a contour counter. There

are NS tracking units, each for one row, to keep track of the latest elements where the indices

should be written.

To understand the mechanism of memory architecture, consider the example in Figure 3.4(a).

First, the deviation in distance of point 1 is being calculated. If the comparator indicates

condition A, the value from the reduced precision data-path is the smallest, and all previous

values stored in that row will be cleared. Second, the index corresponding to the new value is

written to element 1 of row 1. Third, tracking unit 1 is updated to point to that element. If

condition B is indicated, the minimum value is already stored in the memory and no update is

required. Consider another example in Figure 3.4(b) where the calculation of point NS indicates

condition C. Both the indices in the memory and from the data-path should be stored. Thus, a

contour index is written to the next element and tracking unit NS advances one element further.

After a group of points are processed, the contour indices stored in the memory array are

transferred to the Dynamic Random-Access Memory (DRAM) on the FPGA board. The data

on DRAM will be accessed by the high precision data-path. To fully utilise the memory

bandwidth, only non-empty memory columns are transferred in burst to the DRAM.

70 Chapter 3. Precision Optimisation of Data-paths

Tracking Unit Ns

Tracking Unit 1

Addr

En1

Ns rows

Nc columns

(a) Condition A: the value from the reduced precision data-path is
the smallest, tracking unit 1 points to the element 1 of row 1. Pre-
vious vales stored in row 1 are cleared.

Tracking Unit Ns

Addr

EnNs

Tracking Unit 1

(b) Condition C: both the value in the memory and the index from
the data-path should be stored. A contour index is written to the
next element and tracking unit NS advances one element further.

Figure 3.4: Memory array stores contour indices for re-computation.

3.4.3 Performance Model

We derive a performance model to make the most effective use of the FPGA’s resources and

to address real-time requirements. The results will be presented in Section 3.5.2 and 3.5.3.

The total computation time Tcomp is affected by the time spent on three parts: (1) the re-

duced precision data-path on FPGA, (2) the high precision data-path on CPU, (3) the data

3.4. Reconfigurable System Design 71

transfer through the bus connecting the CPU to FPGA. Equation 3.19 shows the three parts

respectively:

Tcomp,pL = TpL + TpH + Ttran,

THcomp,pL =
1

Tcomp,pL

,
(3.19)

where TpL , TpH and Ttran represent the time spent on (1), (2) and (3) respectively.

The computation time of FPGA, TpL , is shown in Equation 3.20:

TpL =
NP · (NC + Loutput)

freqpL ·NpL

+ LpL , (3.20)

where NP is the number of points, NC is the number of contours, LpL is the length of the

data-path but this term is usually negligible when compared with the amount of data being

processed. Each point needs Loutput cycles to output indices on the memory array to DRAM.

Loutput is affected by the bit-width available between the FPGA and the DRAM and their

relations are shown in Equation 3.21:

Loutput =
NC

Noutput

, Noutput =
Wdram

Widx ·NpL

. (3.21)

Assume that a CPU is dedicated to this application and is not interrupted by other activities,

the computation time of CPU, TpH , is related to the amount of data (NP · NC) and the ratio

of re-computation (R):

TpH = α ·R ·NP ·NC . (3.22)

By profiling the software with different values of R ·NP ·NC , α is the scaling factor determined

by regression.

72 Chapter 3. Precision Optimisation of Data-paths

Table 3.1: Parameters of the performance model.

NP Number of points
NC Number of contours
NpL Number of reduced precision data-path
LpL Length of the data-path
Noutput Number of outputs per data-path per cycle
Loutput Number of output cycles
Lcmp Latency of a comparison operation
R Ratio of re-computation
Wdram Bit-width of FPGA-DRAM connection
Widx Bit-width of one contour index
freqpL Clock frequency of reduced precision data-path
α Empirical constant of CPU speed
BWbus Bandwidth of the bus connecting the CPU to FPGA

The data are moved from the DRAM on FPGA to the CPU’s host memory by Direct Memory

Access (DMA) transfer. The data transfer time from the DRAM to CPU, Ttran, is judged by

the amount of data, the ratio of re-computation, and the bandwidth of the bus connecting the

CPU to FPGA (BWbus):

Ttran =
R ·NP ·NC ·Widx

BWbus

. (3.23)

The model of data transfer is simplified based on an assumption that the data are transferred

in burst over the PCI Express bus from DRAM on the FPGAs to the system memory of the

CPU. Other factors, such as CPU interrupt latency, are not modelled.

With the model, designer can ensure that the system parameters (Table 3.1) do not cause the

system to fail real-time application’s deadline. In summary, this model is used in the next

section to perform system analysis, such as the effect of precision on the level of parallelism

and the re-computation ratio.

3.5. Experimental Evaluation 73

3.5 Experimental Evaluation

3.5.1 General Settings

We use the MPC-C500 reconfigurable system from Maxeler Technologies for our evaluation.

The system has four MAX3 cards, each of which has a Virtex-6 XC6VSX475T FPGA with

297,600 LUTs and 2,016 DSPs. The cards are connected to two Intel Xeon X5650 CPUs and

each card communicates with the CPUs via a PCI Express gen2 x8 link. The CPUs have 12

physical cores and are clocked at 2.66 GHz. We develop the FPGA kernels using MaxCompiler

which adopts a streaming programming model supporting customisable floating-point data

formats.

We also build a CPU-based system by implementing the PQ formulation on a platform with

two Intel Xeon X5650 CPUs running at 2.66 GHz. The code is written in C++ and compiled

by Intel C compiler with the highest optimisation. OpenMP library is used to parallelise the

program for multiple cores. IEEE double precision floating point numbers are used.

For the GPU-based system, we use an NVIDIA Tesla C2070 GPU which has 448 cores running

at 1.15 GHz.

Our PQ implementation supports 100 contours and we set an update rate of 1 kHz as the

real-time requirement.

3.5.2 Parallelism versus Precision

Figure 3.5 shows the overall computation time (Tcomp) and the degree of parallelism of PQ

versus different number of mantissa bits. Please note that all different configurations of mantissa

bits have the same output accuracy. The data set includes 73k points and 100 contours. The

computation times are obtained using our analytical model in Section 3.4.3 and they are verified

experimentally using the implementation as shown in Figure 3.5. The degree of parallelism is

obtained by filling the FPGA with data-paths until the logic cell utilisation exceeds 80% after

74 Chapter 3. Precision Optimisation of Data-paths

the placement and routing process. The degree of parallelism is the highest when we start

with four mantissa bits. Using more mantissa bits decreases the parallelism as well as the

ratio of re-computation, therefore TpL increases but TpH decreases. As shown by the dotted

line in the figure, a minimum computation time is achieved when 10 mantissa bits are used.

The point at 10 mantissa bits is the optimum which achieves the balance between parallelism

and re-computation. For 4-9 mantissa bits, though more data-paths can be implemented, the

overall computation time is slowed down by frequent re-computation. For 11-54 mantissa bits,

the ratio of re-computation is lower but fewer data-paths are available for computation. The

relationship between the re-computation ratio and the number of mantissa bits will be studied

in the next section. Note that when the number of mantissa bits is more than 36, only one

data-path can be mapped onto the FPGA. In such cases, we can implement the data-path in

double precision directly which does not require any re-computation on CPU. This is indicated

by the last data points of both curves.

50

100

150

200

250

300

350

 5 10 15 20 25 30 35 40 45 50
 0

 2

 4

 6

 8

 10

C
o

m
p

u
ta

ti
o

n
 t

im
e

 T
c
o
m

p
 (

m
s
)

P
a

ra
lle

lis
m

 N
p
L

Number of mantissa bits

Modelled computation time
Experimental computation time

Parallelism

Figure 3.5: Computation time (dotted line) and the level of parallelism (solid line) versus
different number of mantissa bits. NP = 73, 000;NC = 100

3.5. Experimental Evaluation 75

3.5.3 Ratio of Re-computation versus Precision

The dotted line in Figure 3.6 shows the ratio of re-computation versus the number of mantissa

bits. The results are obtained from a software version of PQ implementation with precisions

adjusted using MPFR library [107]. For each point, 100 computations of deviation in distance

are required. The ratio of re-computation drops exponentially as the number of mantissa bits

increases. From the performance perspective, the optimal point is when the number of mantissa

bits equals to 10. To the left the ratio of re-computation is too high, to the right the decrease

of re-computation cannot offset the impact brought by the decrease in parallelism. When the

number of mantissa bits is four, in average 2.66 out of 100 computations need to be re-computed

using high precision, i.e. the ratio of re-computation is 2.66%. When the number of mantissa

bits is greater then 15, the ratio of re-computation drops to 1% which is the minimum value

as only one out of 100 values is re-computed. The last data points of both curves indicate the

situation when double precision is used on the FPGA and no re-computation is necessary.

The solid line in Figure 3.6 shows the number of point that can be processed if the application

requires a 1kHz update rate, i.e. the deadline is 1ms. The number of required points is

based on the user specification of the model resolution in three-dimensional space. When

the number of mantissa bits is 10, the maximum number of points can be processed. It is

because the throughput is the highest by balancing the ratio of re-computation and the degree

of parallelism. Although the original data set contains 73k points, in the best case only 10k

points can be processed in real-time. This experiment shows the realistic situation about the

trade-off between the update rate and the resolution of the PQ formulation. The results can

guide the designer to adjust the real-time requirement and the complexity of the modelled

objects.

3.5.4 Comparison: CPU, GPU and Reconfigurable System

Table 3.2 compares the performance of PQ running on CPU, GPU and FPGA in double preci-

sion arithmetic, and our proposed reconfigurable system with CPUs and FPGAs. To have fair

76 Chapter 3. Precision Optimisation of Data-paths

 0

 1

 2

 3

 4

 5

 6

 7

 5 10 15 20 25 30 35 40 45 50
 0

 2

 4

 6

 8

 10

 12

 14

R
a

ti
o

 o
f

re
-c

o
m

p
u

ta
ti
o

n
 R

 (
%

)

N
u

m
b

e
r

o
f

p
o

in
ts

 N
P
 p

ro
c
e

s
s
e

d
 i
n

 1
 m

s
 (

k
)

Number of mantissa bits

Ratio of re-computation
Number of points

Figure 3.6: Ratio of re-computation (dotted line) and the number of points processed in 1 ms
(solid line) versus different number of mantissa bits.

comparison of performance, all platforms use processors manufactured by the smallest process

nodes available to date, and the platforms belong to the server-grade product line.

In 1 ms, our proposed system is able to process 58 times more points than a 12-core CPU system,

and 9 times more points than a GPU system. Without any optimisation, we can only implement

one double precision data-path on an FPGA. Our proposed approach can support five reduced

precision data-paths to be implemented in parallel on one chip, i.e. 20 data-paths in total on

the 4-FPGA system. The clock frequency is also higher because reduced precision simplifies

routing of signals. The performance gain over a double precision FPGA implementation is over

3 times.

Figure 3.7 shows the computation time for a PQ update against the number of points. The

black solid line indicates the real-time bound of 1 ms. In the CPU-based system, even with

the fastest configuration (12 cores), only 173 points can be processed in real-time. Meanwhile,

the performance of our proposed 1-FPGA reconfigurable system is on-par with a 4-FPGA

reconfigurable system in double precision. Our proposed 4-FPGAs system can process 10,094

3.6. Summary 77

Table 3.2: Comparison of PQ computation in 1 ms using CPU-based system (CPU), GPU-based
system (GPU), double precision FPGA-based reconfigurable system (RS DP) and FPGA+CPU
reconfigurable system with reduced precision (RS RP).

CPU GPU RS DP RS RP
Clock frequency (MHz) 2,660 1,150 80 130 & 2,660 a

Number of cores 12 448 4 20
Number of mantissa bits 53 53 53 10 & 53 b

Number of pL eval. (k) 0 0 0 1009.4
Number of pH eval. (k) 173 106 320 10.1
Number of total eval. (k) 173 106 320 1019.5
Evaluated in pH (%) 100 100 100 1
Number of points in 1 ms 173 1,064 3,200 10,094
Normalised speedup 1x 6.15x 18.5x 58.35x
Reduced precision gain - - 1x 3.15x

a FPGA and CPU clock frequencies.
b Reduced precision and high precision.

points within the 1 ms interval.

3.6 Summary

This chapter presents a reconfigurable computing solution to proximity query computation. We

transform the algorithm to enable pipelining and apply reduced precision methodology to max-

imise parallelism. Run-time reconfiguration is employed to optimise precision automatically.

We then map the optimised algorithm to a reconfigurable system with four Virtex-6 FPGAs

and 12 CPU cores. Our proposed reconfigurable system achieves 478 times speedup over a

single-core CPU, 58 times speedup over a 12-core CPU system, 9 times speedup over a GPU,

and 3 times speedup over an FPGA implementation in double precision. Since more points can

be processed in real-time, we can handle a more complex robot model with a finer resolution.

The reconfigurable system design and performance model allow users evaluate system’s real-

time performance. Users are able to adjust the precision of calculation and the complexity of

object representation to ensure that the application meets the real-time requirements. This

chapter focuses on static analysis and optimisation is mainly done during design stage. The

next chapter will discuss techniques related to run-time optimisation.

78 Chapter 3. Precision Optimisation of Data-paths

100

1

10

100

1

10

100

 2 4 6 8 10 12

C
o

m
p

u
ta

ti
o

n
 t

im
e

 T
c
o
m

p
 (

m
s
)

Number of points NP (k)

1-C CPU
4-C CPU
8-C CPU

12-C CPU
1 GPU

4 GPUs
1 FPGAs

1 FPGAs and 12-C CPU
4 FPGAs

4 FPGAs and 12-C CPU
Real-time bound

Figure 3.7: Computation time for a PQ update with 100 contours versus the number of points.

Chapter 4

Run-time Adaptation of System

Configuration

4.1 Introduction

This chapter presents an adaptation approach for reconfigurable systems. The approach pro-

vides an efficient solution to real-time SMC methods. Typical applications that can benefit

from real-time SMC methods include robot localisation and air traffic management, which will

be discussed later in this chapter.

We derive an adaptive SMC algorithm that adjusts its computation complexity at run time

based on the quality of results. To map our algorithm to a reconfigurable system consisting of

multiple FPGAs and CPUs, we design a pipeline-friendly data structure to make effective use of

the stream computing model. Moreover, we accelerate the algorithm with a data compression

scheme and data control separation.

The key contributions of this chapter include:

• An adaptive SMC algorithm which adapts the size of particle set at run-time. The

algorithm is able to reduce computation workload while maintaining the quality of results.

79

80 Chapter 4. Run-time Adaptation of System Configuration

• Mapping the proposed algorithm to a scalable and reconfigurable system by following the

stream computing model. A novel data structure is designed to take advantage of the

architecture and to alleviate the data transfer bottleneck. The system uses the run-time

reconfigurability of FPGA to switch between computation mode and low-power mode.

The rest of the chapter is organised as follows. Section 4.2 describes the proposed adaptive SMC

methods. Section 4.3 presents the heterogeneous reconfigurable systems which is optimised for

adaptive SMC methods. Section 4.4 discusses techniques which reduce the transfer overhead of

particle stream. Section 4.5 provides experimental results and Section 4.6 concludes our work.

4.2 Adaptive SMC Algorithm

This section introduces an adaptive SMC algorithm which changes the number of particles at

each time-step. The algorithm is adapted from [100] and we transform it to a pipeline-friendly

version for mapping to the reconfigurable system. In essence, the data dependency and random

data access are minimised. As shown in Algorithm 3, the algorithm consists of four stages. For

each time-step t, the algorithm is bounded by itlrepeat iterations and each iteration is bounded

by NPt
particles. The basic SMC design parameters are described in Table 2.1 in Chapter 2.

Stage 1 - Sampling and Importance Weighting (line 8 to 9): At the initial time-step

(t = 0), the number of particles NP0 is initialised with NPmax
which is the maximum number

of available particles. At the subsequent time-steps, the number of particles is denoted as NPt
.

Initially, the particle set {s(i)t }
NPt

i=1 is sampled to {s′(i)t+1}
NPt

i=1 . Then a weight from {w(i)}
NPt

i=1 is

assigned to each particle. As a result, {s′(i)t+1}
NPt

i=1 and {w(i)}
NPt

i=1 give an estimation of the next

state.

During sampling and importance weighting, the computation of every particle is independent

of each other. The mapping of computation to FPGAs will be described in Section 4.3.

4.2. Adaptive SMC Algorithm 81

Algorithm 3 Adaptive SMC algorithm.
1: NP0

← NPmax

2: {s
(i)
0 }

NP0
i=1 ←random set of particles

3: t = 1
4: for each step t do
5: r = 0
6: while r ≤ itl repeat do
7: —On FPGAs—
8: Sample a new state {s

′(i)
t+1}

NPt

i=1 from {s
(i)
t }

NPt

i=1

9: Calculate unnormalised importance weights {w′(i)}
NPt

i=1 and accumulate the weights as wsum

10: Calculate the lower bound of sample size ÑPt+1
by Equation 4.1

11: —On CPUs—
12: Sort {s

′(i)
t+1}

NPt

i=1 in descending {w′(i)}
NPt

i=1

13: if ÑPt+1
< NPt

then

14: NPt+1
= max

(
⌈ÑPt+1

⌉, NPt
/2
)

15: Set a = 2NPt+1
−NPt

and b = NPt+1

16: –Do the following loop in parallel–
17: for i in NPt

−NPt+1
do

18: s
′(i)
t+1 =

s
′(a)
t+1w

′(a)+s
′(b)
t+1w

′(b)

w′(a)+w′(b)

19: w′(i) = w′(a) + w′(b)

20: a = a+ 1 and b = b− 1
21: end for

22: else if ÑPt+1
≥ NPt

then

23: a = 0 and b = 0
24: for i in NPt+1

−NPt
do

25: if w′(a) < w′(a+1) and a < NPt+1
then

26: a = a+ 1
27: end if

28: s
′(NPt

+b)
t+1 = s

′(a)
t+1/2

29: s
′(a)
t+1 = s

′(a)
t+1/2

30: w′(NPt
+b) = w′(a)/2

31: w′(a) = w′(a)/2
32: b = b+ 1
33: end for

34: end if

35: Resample {s
′(i)
t+1}

NPt

i=1 to {s
(i)
t+1}

NPt+1

i=1
36: r = r + 1
37: end while

38: end for

82 Chapter 4. Run-time Adaptation of System Configuration

Stage 2 - Lower Bound Calculation (line 10): This stage derives the smallest number of

particles that are needed in the next time-step in order to bound the approximation error. The

adaptive algorithm seeks a value which is less than or equal to NPmax
. This number, denoted

as ÑPt+1 , is referred to as the lower bound of sampling size. It is calculated by Equation 4.1:

ÑPt+1 = σ2 ·
NPmax

V ar({s′(i)t+1}
NPt

i=1)
, (4.1)

where

σ2 =

NPt∑

i=1

(
w(i) · s′(i)t+1

)2

− 2 · E({s′(i)t+1}
NPt

i=1) ·

NPt∑

i=1

(
(w(i))2 · s′(i)t+1

)

+
(
E({s′(i)t+1}

NPt

i=1)
)2

·

NPt∑

i=1

(w(i))2,

(4.2)

V ar({s′(i)t+1}
NPt

i=1) =

NPt∑

i=1

(
w(i) · (s′(i)t+1)

2
)
−

(
E({s′(i)t+1}

NPt

i=1)
)2

, (4.3)

E({s′(i)t+1}
NPt

i=1) =

NPt∑

i=1

w(i) · s′(i)t+1. (4.4)

As shown in Equation 4.2 to 4.4, w(i) is a normalised term. To calculate w(i), a traditional

software-based approach is to iterate through the set of particles twice. The sum of weights

wsum and unnormalised weight w′(i) are calculated in the first iteration. Then w(i) is obtained

by dividing w′(i) by wsum in the second iteration. However, this method is inefficient for FPGA

implementation. It is because 2 · NPt
cycles are needed to process NPt

pieces of data, which

reduces the throughput by 50%.

To fully utilise deep pipelines targeting an FPGA, we perform function transformation. Given

w(i) = w′(i)

wsum
, we move wsum from Equation 4.2 to 4.4. By doing so, we obtain a transformed

form as shown in Equations 4.5 to 4.7.

4.2. Adaptive SMC Algorithm 83

σ2 =
1

(wsum)2
·

(NPt∑

i=1

(
w′(i) · s′(i)t+1

)2

− 2 · E({s′(i)t+1}
NPt

i=1) ·

NPt∑

i=1

(
(w′(i))2 · s′(i)t+1

)

+
(
E({s′(i)t+1}

NPt

i=1)
)2

·

NPt∑

i=1

(w′(i))2
)
,

(4.5)

V ar({s′(i)t+1}
NPt

i=1) =
1

wsum

·

NPt∑

i=1

(
w′(i) · (s′(i)t+1)

2
)
−
(
E({s′(i)t+1}

NPt

i=1)
)2

, (4.6)

E({s′(i)t+1}
NPt

i=1) =
1

wsum

·

NPt∑

i=1

w′(i) · s′(i)t+1. (4.7)

wsum and w′(i) are computed simultaneously in two separate data-paths. At the last clock cycle

of the particle stream, σ2, V ar({s′(i)t+1}
NPt

i=1) and E({s′(i)t+1}
NPt

i=1) are obtained. The details of the

FPGA kernel design will be explained in Section 4.3.

Stage 3 - Particle Set Size Tuning (line 12 to 34): The adaptive approach tunes the

particle set size to fit the lower bound NPt+1 . This stage is done on the CPUs because the

operations involve non-sequential data access that cannot be mapped efficiently to FPGAs.

The particles are sorted in descending order according to their weights. As the new sample size

can increase or decrease, there are two cases:

• Case I: Particle set reduction when ÑPt+1 < NPt

The lower bound NPt+1 is set to max
(
⌈ÑPt+1⌉, NPt

/2
)
. Since the new size is smaller

than the old one, some particles are combined to form a smaller particle set. Figure 4.1

illustrates the idea of particle reduction. The first 2NPt+1 − NPt
particles with higher

weights are kept and the remaining 2(NPt
−NPt+1) particles are combined in pairs. As a

result, there are NPt
− NPt+1 new particles injected to form the target particle set with

NPt+1 particles. We combine the particles deterministically to keep the statements in

84 Chapter 4. Run-time Adaptation of System Configuration

2Np −Nptt+1 2(Npt −Np t+1)

Npt

kept combined in pairs

(a) Combining the last 2(NPt
−NPt+1

) particles with
lower weights

Np t+1

2Np t+1−Np t Npt −Npt+1

Npt

kept droppedinjected

(b) NPt+1
new particles are formed

Figure 4.1: Particle set reduction.

the loop independent of each other. As a result, loop unrolling is undertaken to execute

the statements in parallel. The complexity of the loop is O
(

NPt
−NPt+1

Nparallel

)
, where Nparallel

indicates the level of parallelism.

• Case II: Particle set expansion when ÑPt+1 ≥ NPt

The lower bound NPt+1 is set to ÑPt+1 . Some particles are taken from the original set

and are inserted to form a larger set. The particles with larger weight would have more

descendants. As shown in line 22 to 34, the process requires picking the particle with the

largest weight at each iteration of particle incision. Since the particle set is pre-sorted,

the complexity of particle set expansion is O
(
NPt+1 −NPt

)
.

Stage 4 - Resampling (line 35): Resampling is performed to pick NPt+1 particles from

{s′(i)t+1}
NPt

i=1 to form {s(i)t+1}
NPt+1

i=1 . The process has a complexity of O
(
NPt+1

)
.

4.3 Reconfigurable System Design

This section describes the proposed heterogeneous reconfigurable system. It is scalable to cope

with different FPGA devices and applications. The reconfigurable system also takes advantage

of the run-time reconfiguration feature for power and energy reduction.

4.3. Reconfigurable System Design 85

4.3.1 Mapping Adaptive SMC to Reconfigurable System

The design of reconfigurable system is shown in Figure 4.2. A heterogeneous structure is

employed to make use of multiple FPGAs and CPUs. FPGAs and CPUs communicate through

high bandwidth buses as in Figure 1.1(b). As shown in the figure, FPGAs are responsible for

(1) sampling, (2) importance weighting, and (3) lower bound calculation. The data-paths on

the FPGAs are fully-pipelined. Each FPGA has its own on-board DRAM to store the large

amount of particle data. On the other hand, the CPUs gather all the particles from FPGAs to

perform particle set size tuning and resampling.

Resampling requires a collective operation over the weights which makes it less readily par-

allelised in hardware. Different resampling methods have been proposed aiming to parallelise

the algorithm on FPGAs [108] and GPUs [109]. Direct resampling methods such as strati-

fied [110] and systematic resampling [111] can achieve certain degree of parallelism by removing

data dependency. Monte Carlo based methods such as Metropolis [112] and rejection sam-

pling [113] strategies are more straightforward to be implemented in parallel devices. However,

the Metropolis method results in a biased sample, while rejection results in non-deterministic

timing. Despite the parallelisation effort, these methods do not address the problem of non-

sequential memory access patterns which have a significant impact on performance when the

particles are stored in off-chip memory instead of on-chip memory.

4.3.2 FPGA Kernel

Sampling, importance weighting and lower bound calculation are the most computation inten-

sive stages. In each time-step, these three stages are iterated for itl repeat times. An FPGA

kernel enabling efficient acceleration is proposed.

Figure 4.4 shows the components of the FPGA kernel. The kernel is fully pipelined to achieve

one output per clock cycle. It can also be replicated as many times as FPGA resource allow

and the replications can be split across multiple FPGA boards. The kernel takes three inputs

from the CPUs or on-board DRAM: (1) state, (2) reference, and (3) seed. Application spe-

86 Chapter 4. Run-time Adaptation of System Configuration

r<itl_repeat

Sampling

Particle Set Resizing

FPGAs

CPUs

next

state weights state

Lower Bound Calculation

Resampling
Go to the next

time-step

lower

bound sum

Importance Weighting

r==itl_repeat

Figure 4.2: Heterogeneous reconfigurable system (Solid lines: data-paths; Dotted lines: control-
paths).

Field N Field N

Burst address 1 Burst address N+1

Particle 1 Particle 2

Block 1 Block 2

Field 1 Field 2 Field 3 Field 1 Field 2 Field 3

Figure 4.3: A particle stream.

cific parameters are stored in ROMs. Three building blocks corresponding to the sampling,

importance weighting and lower bound calculation stages are described in Section 4.2.

For sampling and importance weighting, the computation of each particle is independent of

each other. Particles are fed to the FPGAs as a stream shown in Figure 4.3. Each block of the

particle stream consists of a number of data fields which store information of a particle, where

the number of data fields is application dependent. In every clock cycle, one piece of data is

transferred from the onboard memory to an FPGA data-path. Each FPGA data-path has a

4.3. Reconfigurable System Design 87

Reference

ROMs for

Application

Parameters

Random

Number

Generator

Sampling

Importance

Weighting

Weight

Accumulation

DRAM Seed

Weights

Next state

particles

Current state

Lower bound

Calculation

Sum

Lower

bound

Figure 4.4: FPGA kernel design.

long pipeline where each stage is filled with a piece of data, and therefore many particles are

processed simultaneously. Fixed-point data representation is customised at each pipeline stage

to reduce the resource usage.

Meanwhile, the accumulation of wsum introduces a feedback loop. A new weight comes along

every cycle which is more quickly than the floating-point unit to perform addition of the previous

weight. In order to achieve one result per clock cycle, fixed-point data-path of sufficient size is

implemented to ensure no overflow or underflow occurs.

88 Chapter 4. Run-time Adaptation of System Configuration

4.3.3 Performance Model for Run-time Reconfiguration

We derive a model to analyse the computation time of reconfigurable system. The model helps

us to design a configuration schedule that satisfies the real-time requirement and, if necessary,

amend the application’s specification.

The computation time, Tcomp, of reconfigurable system consists of three components: (1) Data-

path time Tdatapath, (2) CPU time Tcpu, and (3) Data transfer time Ttran as shown in Equa-

tion 4.8:

Tcomp = itl repeat · (Tdatapath + Tcpu + Ttran) , (4.8)

where itl repeat is a constant that represents the number of times that the sampling, importance

weighting and resampling processes are repeated in every time-step.

Data-path time, Tdatapath, denotes the time spent on the FPGAs.

Tdatapath =

(
NPt

freqfpga ·Ndatapath

+ L− 1

)
1

Nboard

, (4.9)

where NPt
denotes the number of particles at the current time-step and freqfpga denotes the

clock frequency of the FPGAs. L is the length of the pipeline. Ndatapath denotes the number of

data-paths on one FPGA board. Nboard is the number of FPGA boards in the system.

CPU time, Tcpu, denotes the time spent on the CPUs. By Amdahl’s Law:

Tcpu = α ·
NPt

freqcpu
·

(
1− par +

par

Nthread

)
, (4.10)

where the clock frequency and number of threads of the CPUs are represented by freqcpu

and Nthread respectively. par is an application-specific parameter in the range of [0, 1] which

represents the ratio of program path that can be parallelised, and α is a scaling constant

derived empirically. By running the software with different values of NPt
, α is the scaling

4.3. Reconfigurable System Design 89

factor determined by regression. This is based on the assumption that the CPU is dedicated

to particle set resizing and resampling, and the computation time scales linearly with the data

size.

Data transfer time, Ttran, denotes the time of moving a particle stream between the FPGAs

and the CPUs.

Ttran = Tinput + Toutput,

=
(2 · df + 1) ·Wdata ·NPt

freqbus · lane · eff ·Nboard

,
(4.11)

where df is the number of data fields of a particle. For example, if a particle contains the

information of coordinates (x, y) and heading h, df = 3. Given that the constant 1 represents

the weight of the particle and the constant 2 accounts for the movement of data in and out of

the FPGAs, and Wdata is the bit-width of one data field, the expression (2 · df + 1) ·Wdata is

regarded as the size of a particle. freqbus is the clock frequency of the bus connecting the CPUs

to FPGAs and lane is the number of bus lanes connected to one FPGA. Since many buses, such

as the PCI Express bus, encode data during transfer, the effective data are denoted by eff (in

PCI Express Gen2 the value is 8/10). Similar to the model in Chapter 3.4.3, the model of data

transfer is based on a simplified view of the system. It is assumed that the data are transferred

in burst over the PCI Express bus from DRAM on the FPGAs to the system memory of the

CPU.

In [24], the data transfer time has a significant performance impact on reconfigurable system.

To reduced the data transfer overhead, we introduce a data compression technique that will be

described in Section 4.4.

In real-time applications, each time-step is fixed and is known as the real-time bound Trt. The

derived model helps system designers to ensure that the computation time Tcomp is shorter than

Trt. An idle time Tidle is introduced to represent the time gap between the computation time

and real-time bound. It is calculated by Equation 4.12:

90 Chapter 4. Run-time Adaptation of System Configuration

Tidle = Trt − Tcomp. (4.12)

Figure 4.5(a) illustrates the power consumption of a reconfigurable system without run-time

reconfiguration. It shows that the FPGAs are still drawing power after the computation finishes.

By exploiting run-time reconfiguration as shown in Figure 4.5(b), the FPGAs are loaded with

a low-power configuration during the idle period. Such configuration minimises the amount of

active resources and clock frequency. Equation 4.13 describes the sleep time when the FPGAs

are idle and being loaded with the low-power configuration. If the sleep time is positive (i.e.

Tidle ≥ Tconfig × 2), reconfiguration would be helpful in these situations, where the sleep time

is expressed as:

Tsleep = Tidle − Tconfig × 2. (4.13)

Configuration time, Tconfig, denotes the time needed to download a configuration bit-stream

to the FPGAs:

Tconfig =
sizebs

BWconfig

, (4.14)

where sizebs represents the size of bitstream in bits, and BWconfig is the band width of the

configuration interface.

Table 4.1 summerises the parameters used in the performance model. In Section 4.5, the

model will be used to determine whether run-time reconfiguration could be done while meeting

real-time requirements.

4.4. Optimising Transfer of Particle Stream 91

(a) Without reconfiguration

(b) With reconfiguration to low-power mode during idle

Figure 4.5: Power consumption of the reconfigurable system over time.

4.4 Optimising Transfer of Particle Stream

In Section 4.3, the data transfer time depends on the number of particles and the bus band-

width between the CPUs and FPGAs. It can be a major performance bottleneck as depicted

in [24]. Refer to Figure 4.6(a), each block stores the data of a particle. When the CPUs finish

processing, all data are transferred from the CPUs to the FPGAs. The data transfer time

cannot be reduced by either implementing more FPGA data-paths or increasing the FPGAs’

clock frequency because the bottleneck is at the bus connecting the CPUs and FPGAs.

92 Chapter 4. Run-time Adaptation of System Configuration

Table 4.1: Parameters of the performance model.

itl repeat Number of iterations of the outer loop
NPt

Number of particles
Ndatapath Number of data-paths on one FPGA board
Nboard Number of FPGA boards in the system
Nthread Number of threads of the CPUs
freqfpga Clock frequency of the FPGAs
freqcpu Clock frequency of the CPUs
freqbus Clock frequency of the bus connecting the CPUs to FPGAs

L Length of the pipeline
α Empirical constant of CPU speed
par Ratio of program path that can be parallelised
df Number of data fields of a particle

Wdata Bit-width of one data field
lane Number of bus lanes connected to one FPGA
eff Effective data transferred via the bus

BWconfig Band width of the configuration interface

To improve the data transfer performance, we design a data structure which facilitates com-

pression of particles. The idea comes from an observation of the resampling process - some

particles are eliminated and the vacancies are filled by replicating non-eliminated particles.

Replication means data redundancy exists. For example, in the original data structure shown

in Figure 4.6(a), particle 1 has three replicates and particle 2 is eliminated, therefore, particle 1

is stored and transferred for three times.

By using the data structure in Figure 4.6(b), data redundancy is eliminated by storing every

particle once. Each particle is also transferred once. As a result, the data transfer time and

memory space are reduced.

A reconfigurable system often contains DRAM which transfers data in burst in order to max-

imise the memory bandwidth. This works fine with the original data structure where the data

are organised as a sequence from the lower address space to the upper. However, using the

new data structure, the data access pattern is not sequential any more, the address goes back

and forth. The DRAM controller needs to be modified so that the transfer throughput would

not be affected by the change of data access pattern. As illustrated in Figure 4.6(b), a tag

sequence is used to indicate the address of the next block. For example, after reading the data

of particle 1, the burst address is at N . If the tag is one, the next burst address will point to the

address of the next block at N +1. Otherwise, the burst address will point to the start address

of the current block (which is 1). The data are still addressed in burst so the performance is

4.4. Optimising Transfer of Particle Stream 93

Field 2 Field 3 Field NField 1 Field 2 Field 3 Field NField 1

Burst address 2N+1 Burst address 3N+1

Field 2 Field 3 Field NField 1 Field 2 Field 3Field 1

Burst address 1 Burst address N+1

Field N

Particle 1 Particle 1 Particle 1 Particle 3

Block 1 Block 2 Block 3 Block 4

(a) Particle stream before compression

Field 2 Field 3 Field NField 1 Field 2 Field 3 Field NField 1

Burst address 1 Burst address N+1

Field 2 Field 3 Field NField 1

Burst address 3N+1

Field 2 Field 3 Field NField 1

Burst address 2N+1

Particle 1

0 1 10

Block 1 Block 2 Block 3 Block 4

Particle 3 Particle 4 Particle 5

Tag Tag Tag Tag

Tag = 1Tag = 0

(b) Compressed particle stream

Figure 4.6: Compressing particle stream: After the resampling process, some particles are
eliminated and the remaining particles are replicated. Data compression is applied so that
every particle is stored and transferred once only.

not degraded.

The data transfer time with compression, Ttran, is shown below:

Ttran =
(df

Rep
+ df + 1) ·Wdata ·NPt

freqbus · lane · eff ·Nboard

, (4.15)

where Rep is the average number of replication of the particles, and therefore the size of

the resampled particle stream is reduced by a ratio of Rep when compared to that without

compression. The range of Rep is from 1 to NPt
, depending on the distribution of particles

after the resampling process. The effect of Rep on data transfer time will be evaluated in the

next section.

94 Chapter 4. Run-time Adaptation of System Configuration

4.5 Experimental Results

To evaluate the performance of the reconfigurable system and make comparison with the other

systems, we implement an application which uses SMC for localisation and tracking of mobile

robot. The application is proposed in [90] to track location of moving objects conditioned upon

robot positions over time. Given an priori learned map, a robot receives sensor values and

moves at regular time intervals. Meanwhile, M moving objects are tracked by the robot. The

states of the robot and objects at time t are represented by a state vector Xt:

Xt = {Rt, Ht,1, Ht,2, ..., Ht,M}. (4.16)

Rt denotes the robot’s position at time t, and Ht,1, Ht,2, ..., Ht,M denote the locations of the M

objects at the same time.

The following equation is used to represent the posterior of the robot’s location:

p(Xt|Yt, Ut) = p(Rt|Yt, Ut)
M∏

m=1

p(Ht,m|Rt, Yt, Ut), (4.17)

where Yt is the sensor measurement and Ut is the control of the robot at time t. The robot path

posterior p(Rt|Yt, Ut) is represented by a set of robot-particles. The distribution of an object’s

location p(Ht,m|Rt, Yt, Ut) is represented by a set of object-particles, where each object-particle

set is attached to one particular robot-particle. In other words, if there are NPr
robot-particles

representing the position of the robot, there are NPr
object-particle sets, each has NPh

particles.

In the application, the area of the map is 12m by 18m. The robot makes a movement of

0.5m every five seconds, i.e. Trt = 5. The robot can track eight moving objects at the same

time. A maximum of 8192 particles are used for robot-tracking and each robot-particle is

associated with 1024 object-particles. Therefore, the maximum number of data-path cycles

is 8 × 8192 × 1024 = 67, 108, 864. Each particle being streamed into the FPGAs contains

coordinates (x,y) and heading h which are represented by three single precision floating-point

4.5. Experimental Results 95

numbers. For the particle being streamed out of the FPGAs, it also contains a weight in addition

to the coordinates. From Equation 4.11, the size of a particle is (2 · 3 + 1) · 32 bits = 224 bits.

4.5.1 System Settings

Reconfigurable system: Two reconfigurable systems from Maxeler Technologies are used.

The system is developed using MaxCompiler, which adopts a stream computing model.

• MaxWorkstation is a microATX form factor system which is equipped with one Xilinx

Virtex-6 XC6VSX475T FPGA. The FPGA has 297,600 LUTs, 595,200 registers, 2,016

DSPs and 1,064 block RAMs. The FPGA board is connected to an Intel i7-870 CPU (4

physical cores, 8 threads in total, clocked at 2.93 GHz) via a PCI Express Gen2 x8 bus.

The maximum bandwidth of the PCI Express bus is 2 GB/s according to the specification

provided by Maxeler Technologies.

• MPC-C500 is a 1U server accommodating four FPGA boards, each of which has a Xilinx

Virtex-6 XC6VSX475T FPGA. Each FPGA board is connected to two Intel Xeon X5650

CPUs (12 physical cores, 24 threads in total, clocked at 2.66 GHz) via a PCI Express

Gen2 x8 bus.

To support run-time reconfigurability, two FPGA configurations are used:

• Sampling and importance weighting configuration is clocked at 100 MHz. Two data-paths

are implemented on one FPGA to process particles in parallel. The total resource usage

is 231,922 LUTs (78%), 338,376 registers (56%), 1,934 DSPs (96%) and 514 block RAMs

(48%).

• Low-power configuration is clocked at 10 MHz, with 5,962 LUTs (2%), 6,943 registers

(1%) and 12 block RAMs (1%). It uses minimal resources just to maintain communication

between the FPGAs and CPUs.

96 Chapter 4. Run-time Adaptation of System Configuration

CPU: The CPU performance results are obtained from a 1U server that hosts two Intel Xeon

X5650 CPUs. Each CPU is clocked at 2.66 GHz. The program is written in C language and

optimised by Intel Compiler with SSE4.2 and flag -fast enabled. OpenMP is used to utilise all

the processor cores.

GPU: An NVIDIA Tesla C2070 GPU is hosted inside a 4U server. It has 448 cores running

at 1.15 GHz and has a peak performance by 1288 GFLOPS. The program is written in C for

CUDA and optimised to use all the cores available. To get more comprehensive results for

comparison, we also estimate the performance of multiple GPUs. The estimation is based on

the fact that the first three stages (sampling, importance weighting, lower bound calculation)

can be evenly distributed to every GPU and be computed independently, so the data-path and

data transfer speedup scales linearly with the number of GPUs. On the other hand, the last

two stages (particle set resizing, resampling) are computed on the CPU no matter how many

GPUs are used. Therefore, the CPU time does not scale with the number of GPUs.

4.5.2 Adaptive SMC versus Non-adaptive SMC

The comparison of adaptive and non-adaptive SMC is shown in Table 4.2. Both model es-

timation and experimental results are listed. Initially, the maximum number of particles are

instantiated for global localisation.

For the non-adaptive scheme, the particle set size does not change. The total computation

time estimated and measured are 1.328 seconds and 1.885 seconds, respectively. The measured

computation time is longer due to the model’s assumption described in Section 4.3.3.

For the adaptive scheme, the number of particles varies from 573k to 67M, and the computa-

tion time scales linearly with the number of particles. From Table 4.2, both the model and

experiment show 99% reduction in computation time.

Figure 4.7 is the experimental results which show how both the number of particles and the

components of total computation time vary over the wall-clock time (passage of time from the

start to the completion of the application). Although the number of particles is reduced in

4.5. Experimental Results 97

Table 4.2: Comparison of adaptive and non-adaptive SMC on reconfigurable system (Max-
Workstation with one FPGA, no data compression is applied). Parameters: itl repeat = 15;
Ndatapath = 2; Nboard = 1; Nthread = 8; freqfpga = 100 MHz; freqcpu = 2930 MHz; freqbus = 500
MHz; par = 0; df = 3; Wdata = 128 bits; lane = 8; eff = 0.8

Non-adaptive SMC Adaptive SMC
Model Experiment Model Experiment

Number of particles NPt
67M 573k

Data-path time Tdatapath (s) 0.336 0.336 0.003 0.003
CPU time Tcpu (s) 0.117 0.117 0.001 0.001
Data time Ttran (s) 0.875 1.432 0.007 0.012
Total computation time Tcomp (s) 1.328 1.885 0.011 0.016
Comp. speedup (higher is better) 1x 1x 120.7x 117.8x

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 0 20 40 60 80 100 120 140
 0.001

 0.01

 0.1

 1

 10

 100

 1000

N
u

m
b

e
r

o
f

p
a

rt
ic

le
s
 N

p
t

C
o

m
p

o
n

e
n

ts
 o

f
c
o

m
p

u
ta

ti
o

n
 t

im
e

 (
s
)

Wall-clock time (s)

Idle time
No. of particles

Data transfer time
Data path time

CPU time

Figure 4.7: Number of particles and components of total computation time versus wall-clock
time.

the proposed design, the results in Figure 4.8 show that the localisation error is not adversely

affected. The error is the highest during initial global localisation and it is reduced when the

robot moves. The adaptive scheme has even better results after global localisation, the possible

reason is that the robot’s position is estimated from the average of all particles which have

converged to the actual position after the first move, fewer particles lead to a smaller variation.

98 Chapter 4. Run-time Adaptation of System Configuration

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 20 40 60 80 100 120 140

L
o

c
a

lis
a

ti
o

n
 e

rr
o

r
(m

)

Wall-clock time (s)

Adaptive
Non-adaptive

Figure 4.8: Localisation error versus wall-clock time.

4.5.3 Data Compression

Figure 4.9 shows the reduction in data transfer time after applying data compression. A higher

number of replications means a lower data transfer time. The data transfer time has a lower

bound of 0.212 seconds because the data from the FPGAs to the CPUs are not compressible.

Only the particle stream after the resampling process is compressed when it is transferred from

the CPUs to the FPGAs.

4.5.4 Performance Comparison of Reconfigurable System, CPU and

GPU

Table 4.3 shows the performance comparison of the CPUs, GPUs and reconfigurable system.

Data-path time: Considering the time spent on the data-paths only, the reconfigurable system

is up to 328 times faster than a single-core CPU and 76 times faster than a 12-core CPU system

with 24 threads. In addition, it is 12 times and 3 times faster than one GPU and four GPUs,

respectively.

Data transfer time: The data transfer time of reconfigurable system is shown in three rows.

4.5. Experimental Results 99

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 5 10 15 20

D
a

ta
 t

ra
n

s
fe

r
ti
m

e
 (

s
)

Number of replications

Figure 4.9: Effect on the data transfer time by particle stream compression.

The first row shows the situation when the PCI Express bandwidth is 2 GB/s. The second row

shows the performance when PCI Express gen3 x8 (7.88 GB/s) is used such that the bandwidth

is comparable with that of the GPU system. When multiple FPGA boards are used, the data

transfer time decreases because multiple PCI Express buses are utilised simultaneously. The

third row shows the performance when data compression is applied and it is assumed that each

particle is replicated for 20 times in average.

CPU time: The CPU time of reconfigurable system is shorter than that of the CPU and GPU

systems because part of the resampling process of object-particles is performed on the FPGA

using Independent Metropolis-Hastings (IMH) resampling algorithm [114]. IMH resampling

algorithm is optimised for the deep pipeline architecture where each particle occupies a single

stage of the pipeline. On the CPUs and GPU, the computation of the particles are shared by

threads and therefore IMH resampling algorithm is not applicable.

Total computation time: Considering the overall system performance, reconfigurable system

is up to 169 times faster than a single-core CPU, 41 times faster than a 12-core CPU system.

In addition, it is 9 times faster than one GPU, and 3 times faster than four GPUs. Notice that

the CPUs violate the real-time constraint of 5 seconds.

100 Chapter 4. Run-time Adaptation of System Configuration

Idle time: For a time-step of 5 seconds, the idle time is equal to 5 seconds minus the total

computation time. According to Equation 4.13, if the idle time is longer than the configuration

time (1.6 seconds), it is beneficial to reconfigure the FPGAs from computation mode to low-

power mode. All the reconfiguration system configurations (RS(1), RS(2) and RS(3)) satisfy

this criterion.

Table 4.3: Performance comparison of reconfigurable system (RS), CPU and GPU.

CPU(1) a CPU(2) a GPU(1) b GPU(2) b GPU(3) b RS(1) c RS(2) d RS(3) d

Clock frequency (MHz) 2660 2660 1150 1150 1150 100 100 100

Precision single single single single single
single single single

+ custom + custom + custom
Level of parallelism 1 24 448 896 1792 2+8 e 4+24 e 8+24 e

Data-path time (s) 27.530 6.363 1.000 0.500 0.250 0.336 0.168 0.084
Data-path speedup 1x 4.3x 27.5x 55.1x 110.1x 81.9x 163.9x 327.7x

Data transfer time (s) 0 0 0.360 0.180 0.090
1.432 f 0.716 f 0.358 f

0.363 g 0.182 g 0.091 g

0.223 h 0.111 h 0.056 h

CPU time (s) 0.420 0.334 0.117 0.117 0.117 0.030 0.025 0.025
Total comp. time (s) 27.95 6.697 1.477 0.797 0.457 0.589 0.304 0.165
Overall speedup 1x 4.2x 18.9x 35.1x 61.2x 47.5x 91.9x 169.4x
Idle time (s) Nil Nil 3.523 4.203 4.543 4.111 4.696 4.835
Computation power (W) 183 279 287 424 698 145 420 480
Computation power eff. 1x 0.7x 0.6x 0.4x 0.3x 1.3x 0.4x 0.4x
Idle power (W) 133 133 208 266 382 95 360 360
Idle power eff. 1x 1x 0.6x 0.5x 0.4x 1.4x 0.4x 0.4x
Energy. (J) i 677/5115 673/1868 1041/1157 1331/1456 1911/2054 489/595 1896/1914 1994/2012
Energy eff. 1x 1x/2.7x 0.7x/4.4x 0.5x/3.5x 0.4x/2.5x 1.4x/8.6x 0.4x/2.7x 0.3x/2.5x
a 2 Intel Xeon X5650 CPUs @2.66 GHz (12 cores supporting 24 threads).
b 1/2/4 NVIDIA Tesla C2070 GPUs and 1 Intel Core i7-950 CPU @3.07 GHz (4 cores supporting 8 threads).
c 1 Xilinx XC6VSX475T FPGA and 1 Intel Core i7-870 CPU @2.93 GHz (4 cores supporting 8 threads).
d 4 Xilinx XC6VSX475T FPGAs and 2 Intel Xeon X5650 CPUs @2.66 GHz (12 cores supporting 24 threads).
e Number of FPGA data-paths and number of CPU threads.
f Each FPGA communicates with CPUs via a PCI Express bus with 2 GB/s bandwidth.
g Each FPGA communicates with CPUs via a PCI Express Gen3 x8 bus with 7.88 GB/s bandwidth.
h Each FPGA communicates with CPUs via a PCI Express Gen3 x8 bus with data compression.
i Cases for 573k and 67M particles in a 5-second interval.

Power and energy consumption: In real-time applications, we are interested in the energy

consumption per time-step. Energy is defined as the product of power and time, measured

in joules (watt-seconds). Figure 4.10 shows the power consumption of reconfigurable system,

CPUs and GPU over a period of 10 seconds (two time-steps). The system power is measured

using a power meter which is connected directly between the power source and the system. All

the curves of reconfigurable system show peaks when the system is at the computation mode

and troughs when it is at the low power mode. The power during the configuration period lies

between the two modes. On the reconfigurable system with one FPGA, run-time reconfiguration

4.5. Experimental Results 101

 0

 100

 200

 300

 400

 500

 600

 700

 0 5 10

P
o
w

e
r

(W
)

Wall-clock time (s)

CPU
GPU(1)
GPU(2)

RS(1)
RS(2)
RS(3)

Figure 4.10: Power consumption of reconfigurable system (RS), CPU and GPU in one time-
step, notice that the computation time of the CPU system for one time time-step exceeds the
5-second real-time requirement (It takes 7 seconds).

reduces the idle power consumption by 34% from 145W to 95W. In other words, over a 5-second

time-step, the energy consumption is reduced by up to 33%. On the reconfigurable system with

four FPGAs, the idle power consumption is reduced by 25% from 480W to 360W, and hence

the energy consumption decreased by up to 17%.

The run-time reconfiguration methodology is not limited to the Maxeler systems, it can be

applied to other FPGA platforms. The resource management software of our system (Max-

elerOS) simplifies the effort of performing run-time reconfiguration, and hence we can focus on

studying the impact of run-time reconfiguration on energy saving.

To identify the speed and energy trade-off, we produce a graph as shown in Figure 4.11. Each

data point represents the computation time versus energy consumption of a system setting.

Among all the systems, the reconfigurable system with one FPGA, i.e. RS(1), has the com-

putation speed satisfying the real-time requirement, while consuming the smallest amount of

energy. All the configurations of CPU system cannot meet the real-time requirement. RS(3),

the reconfigurable system with four FPGAs, is the fastest among all the systems in comparison,

102 Chapter 4. Run-time Adaptation of System Configuration

 0.01

 0.1

 1

 10

 100

 0 1000 2000 3000 4000 5000

CPU(1)

CPU(2)

RS(1) RS(2)

RS(3)

GPU(1)

GPU(2)

GPU(3)

R
u

n
-t

im
e

 p
e

r
ti
m

e
-s

te
p

 (
s
)

Energy consumtpion (J)

Real-time bound

Figure 4.11: Run-time versus energy consumption of reconfigurable system (RS), CPU and
GPU (5-second time-step, 67M particles; Refer to Table II for system settings).

therefore it is able to handle larger problems and more complex applications.

To conclude, the best system is the one that meets the deadline, and has the minimum energy

consumption. Some other processors, such as ARM Cortex A9, have lower power consumption

than the systems that evaluated in this section. However, these processors could have slower

computation speed that either miss the deadline, or lead to higher overall energy consumption

for each time-step.

4.6 Summary

This chapter presents an approach for accelerating adaptive particle filter for real-time applica-

tions. The proposed heterogeneous reconfigurable system demonstrates a significant reduction

in power and energy consumption compared with CPU and GPU. The adaptive algorithm

reduces computation time while maintaining the quality of results. The approach is scalable

to systems with multiple FPGAs. A data compression technique is used to mitigate the data

transfer overhead between the FPGAs and CPUs. An implementation of a robot localisation

application targeting the proposed system. Compared to a non-adaptive and non-reconfigurable

4.6. Summary 103

implementation, the idle power of our proposed system is reduced by 25-34% and the overall

energy consumption decreases by 17-33%. Our system with four FPGAs is up to 169 times

faster than a single core CPU, 41 times faster than a 1U CPU server with 12 cores, and 3 times

faster than a modelled four-GPU system.

Chapter 5

Design Flow for Domain-specific

Reconfigurable Applications

5.1 Introduction

In this chapter, we propose a domain-specific design flow for reconfigurable hardware, targeting

SMC in particular. The main objective of this design flow is to reduce the development effort

and optimise the performance of real-time SMC applications. Users can specify application-

specific features which are automatically converted to efficient hardware so redesign effort is

minimised. A computation engine captures the generic control structure which is shared among

all SMC applications. All these features are enabled by a framework for mapping software to

hardware. To enable rapid learning of a large design space, a timing model relates design pa-

rameters to performance constraints, and a machine learning algorithm is used to automatically

deduce characteristics of the design space.

The contributions are as follows:

• A design flow that reduces the development effort of SMC applications on reconfigurable

systems. The reconfigurable system is generalised based on the one mentioned in Chap-

ter 4. Through templating the SMC structure, users can design efficient, multiple-FPGA

104

5.2. SMC Design Flow 105

SMC applications for arbitrary problems without any knowledge of reconfigurable com-

puting. Moreover, the software template is open-source.1

• A machine learning approach that explores the SMC design space automatically and

tunes design parameters to improve performance and accuracy. The resulting parameters

can be applied to the hardware design at run-time without the need for resynthesis. It

is demonstrated that parameter optimisation enables the design space to be explored

an order of magnitude faster without sacrificing quality. When compared with previous

work [25,33], our approach provides better quality of solutions and faster designs.

• The benefit of this approach in terms of design productivity and performance is quanti-

fied over a diverse set of SMC problems. Two applications are implemented on Altera

and Xilinx-based reconfigurable platforms, with varying numbers of FPGAs. For these

problems, the number of lines of code for the FPGA implementation is reduced by ap-

proximately 76%, and significant speedup and energy improvement over CPU and GPU

implementations are demonstrated.

The rest of the chapter is organised as follows. Section 5.2 describes the design flow for gen-

erating reconfigurable SMC designs. It covers the software template, the computation engine

and the performance model. Section 5.3 discusses how the SMC computation engine can be

optimised both at compile-time and run-time. Section 5.4 evaluates the design flow using two

different SMC applications and Section 4.6 concludes our work.

5.2 SMC Design Flow

This section introduces a design flow for generating reconfigurable SMC designs. The design

flow has two novel features to minimise hardware redesign efforts: (1) A generic high-level

mapping where application-specific features are specified in a software template and automat-

ically converted to hardware. The template supports the parameter optimisation described in

1Available online: http://cc.doc.ic.ac.uk/projects/smcgen

http://cc.doc.ic.ac.uk/projects/smcgen

106 Chapter 5. Design Flow for Domain-specific Reconfigurable Applications

Section 5.3. (2) A parametrisable SMC computation engine which is made up of customisable

building blocks and a generic control structure that maximises design reuse. We will start with

three high-level stages as shown in Figure 5.1, and look into the features as we go through this

section.

Functional

Description

1. Application

Feature Extraction

2. SynthesisSupported

FPGA Settings

FPGA CPU

Def

(State, Reference,

Parameters)

FPGA Func

(Sampling,

Weighting)

CPU Func

(Initialisation,

Update)

Application Features / Software template

SMC

Computation

Engine Design

&

Performance

Model

3. Parameter

Optimisation

Tuned Parameters

Simulation Model

Software &

Hardware

Configurations

4. Run-time

Adaptation

Adapted

Parameters

Figure 5.1: Design flow (Compile-time and run-time) for SMC applications: Users only cus-
tomise the application-specific descriptions inside the dotted box.

Figure 5.1 shows the proposed design flow:

1. Starting with a functional description such as a software code or a mathematical formu-

5.2. SMC Design Flow 107

lation, the users identify and code application-specific features (Section 5.2.1). Generally

only the application-specific features are of interest, other features which are common to

all SMC applications are handled by the design flow, so the functional description does

not necessarily have to be a complete software code.

2. The synthesis step automatically weaves the application-specific features with the com-

putation engine (Section 5.2.2) to form a performance model (Section 5.2.3), a simulation

model, and a complete configuration for the targeted reconfigurable system.

In this work the synthesis tool employed is Maxeler’s MaxCompiler. All the application-

specific features and the computation engine are described by an extension of Java

programming language, which is specialised for data flow description, such as latency,

pipeline, multiplexer, FIFO and memory. MaxCompiler also supports FPGAs from mul-

tiple vendors, such that low level configurations, such as I/O binding, are performed

automatically. Our approach can be extended to support other tools and devices, for

example by having the appropriate templates in VHDL or Verilog.

3. The design flow also consists of a parameter optimisation step (Section 5.3) which takes

the simulation model and performance model as inputs to produce a set of performance or

accuracy optimised parameters. Generally a simulation model is sufficient for performing

optimisation, if a complete software code is provided, it can be used to accelerate the

optimisation process.

4. The design of SMC computation engine allows further adaptation of design at run-time.

The adaptation is based on the solution quality. For example, a better solution quality

means that fewer particles could be used for performing SMC, and vice versa.

The basic SMC design parameters used in this Chapter have been described in Table 2.1 in

Chapter 2.

108 Chapter 5. Design Flow for Domain-specific Reconfigurable Applications

5.2.1 Specifying Application Features

Users create a new SMC design by customising the application-specific Java descriptions inside

the dotted box of Figure 5.1. These descriptions correspond to Def (Code 1), FPGA Func

(Code 2) and CPU Func.

Def : Code 1 illustrates the class where number representation (floating-point, fixed-point

with different bit-width), structs (state, reference), static parameters (Table 2.1) and system

parameters are defined. Users are allowed to customise number representation to benefit from

the flexibility of FPGA and make trade-offs between accuracy and design complexity. State

and reference structs determine the I/O interface. Static parameters are defined in this class,

while dynamic parameters are provided at run-time. System parameters define device-specific

properties such as clock speed and parallelism. Lastly, application parameters define properties

that are tied to specific applications.

FPGA Func: Sampling and importance weighting are the most computation intensive func-

tions, and are accelerated by FPGAs. Code 2 gives a simple example on how these two FPGA

functions are defined. Given current state s in, reference r in and observation m in (sensor

values in this example), an estimation state s out is computed. Weight w accounts for the

probability of an observation from the estimated state. The weight is calculated from the prod-

uct of scores over the horizon. In this example, the weight is equal to the score as the horizon

length is one.

CPU Func: Initialisation and update are functions running on the CPU. They are respon-

sible for obtaining and formatting data and displaying results. Resampling is independent of

applications so users need not to customise it.

5.2.2 Computation Engine

In Chapter 4, a heterogeneous reconfigurable system has been designed for accelerating SMC

applications. In this section, the system is extended to improve flexibility in terms of customis-

5.2. SMC Design Flow 109

1 public class Def {

2 // Number Representation

3 static final DFEType float_t =

4 KernelLib.dfeFloat(8,24);

5 static final DFEType fixed_t =

6 KernelLib.dfeFixOffset(26,-20,SignMode.TWOSCOMPLEMENT);

7 // State Struct

8 public static final DFEStructType state_t = new DFEStructType(

9 new StructFieldType(’’x’’, float_t);

10 new StructFieldType(’’y’’, float_t);

11 new StructFieldType(’’h’’, float_t);

12);

13 // Reference Struct

14 public static final DFEStructType ref_t = new DFEStructType(

15 new StructFieldType(’’d’’, float_t);

16 new StructFieldType(’’r’’, float_t);

17);

18 // Static Design parameters (Table I)

19 public static int NPMin = 5000, NPMax = 25000;

20 public static int H = 1, NA = 1;

21 // System Parameters

22 public static int NC_inner = 1, NC_P = 2;

23 public static int Clk_core = 120, Clk_mem = 350;

24 public static int FPGA_resampling = 0, Use_DRAM = 0;

25 // Application parameters

26 public static int NWall = 8, NSensor = 20;

27 }

Code 1: State, control and parameters for the robot localisation example.

ability and design friendliness.

To allow customisation of the computation engine, the engine and data structure are designed

as shown in Figure 5.2(a) and 5.2(b) respectively. The computation engine employs a het-

erogeneous structure that consists of multiple FPGAs and CPUs. FPGAs are responsible

for sampling, importance weighting and optionally resampling index generation, and are fully

pipelined to maximise throughput. To exploit parallelism, particle simulations (sampling and

importance weighting) are computed simultaneously by every processing core on each FPGA.

Processing cores can be replicated as many times as FPGA resources allow. In situations

where the computed results have to be grouped together, data are transferred among FPGAs

via an inter-FPGA connection. To maximise the system throughput, remaining non-compute-

intensive tasks that involve random and non-sequential data accesses are performed on the

CPUs. FPGAs and CPUs communicate through high bandwidth connections such as PCI

110 Chapter 5. Design Flow for Domain-specific Reconfigurable Applications

28 public class Func {

29 public static DFEStruct sampling(

30 DFEStruct s_in, DFEStruct c_in){

31 DFEStruct s_out = state_t.newInstance(this);

32 s_out.x = s_in.x + nrand(c_in.d,S*0.5) * cos(s_in.h);

33 s_out.y = s_in.y + nrand(c_in.d,S*0.5) * sin(s_in.h);

34 s_out.h = s_in.h + nrand(c_in.r,S*0.1);

35 return s_out;

36 }

37 public static DFEVar weighting(

38 DFEStruct s_in, DFEVar sensor){

39 // Score calculation

40 DFEVar score = exp(-1*pow(est(s_in)-sensor,2)/S/0.5);

41 // Constraint handling

42 bool succeed = est(s_in)>0 ? true : false;

43 // Weight accumulation

44 DFEVar w = succeed ? score : 0; //weight

45 return w;

46 }

47 }

Code 2: FPGA functions (Sampling and importance weighting) for the robot localisation ex-
ample.

Express or InfiniBand.

From the control paths (dotted lines) of Figure 5.2(a), we see that there are three loops: (1)

inner, (2) outer, and (3) time-step. First, the inner loop iterates itl inner number of times for

sampling and importance weighting, itl inner increases with the iteration count of the outer

loop. Second, the outer loop iterates itl outer times to do resampling. The resampling process

is performed itl outer times to refine the pool of particles. The particle indices are scrambled

after this stage and the indices are transferred to the CPUs to update the particles. Third,

the time loop iterates once per time-step to obtain a new control strategy and to update the

current state.

Based on this fact, the data structure shown in Figure 5.2(b) is derived. Applications such as

robot localisation presented in Chapter 4 need to follow this data structure in order to cope

with this design flow. Each particle encapsulates three pieces of information: (1) state, (2)

reference, and (3) weight, each being stored as a stream as indicated in the figure. The length

of the state stream is NP ·NA ·H where H means each control strategy predicts H steps into

5.2. SMC Design Flow 111

itl_inner

Sampling

&

Importance Weighting

Weight Accumulation

&

Resampling Index Generation

Resampling

FPGAs

CPUs

particle

index /

weight

state reference

Initialisation

Update

itl_outer

time-step

Inter-FPGA

connection

next

state

(a)

C0C1CNA-1

Particle 0Particle NP-1Particle 0

Horizon H=0Horizon H=1

C0C1CNA-1C0C1CNA-1

S0S1SNA-1

Particle 0Particle NP-1

S0S1SNA-1

Particle 0Particle NP-1

State

stream

Reference

stream

Weight

stream

W0W1WNA-1W0W1WNA-1

(b)

Figure 5.2: (a) Design of the SMC computation engine: Solid lines represent data-paths while
dotted lines represent control paths; (b) Data structure of particles represented by three data
streams.

the future. The reference and weight streams have information of NA agents in NP particles.

The engine design and data structure do not only offer compile-time parametrisation, but

112 Chapter 5. Design Flow for Domain-specific Reconfigurable Applications

state reference

Registers

and ROMs

for

Parameters

Random

Number

Generator

Sampling

Importance Weighting

(Score Calculation,

Constraint Handling)

+

0

x
0

Weight

Accumulation

÷

initial

weight

scaled

weight

fail flagscore

next statecurrent state

Weight calculation:

cumulative score

weight

Resampling

Index

Generation

particle index

NP NA

NP NA

NP NA

State RAM

j=0 and H=0

1 0

itl_inner=0

and H=0

WE

H=0

1 0

0 1

H=0

1 0

j=0

1 0

seed

next stateweight

: Multiplexer

: FIFO

Figure 5.3: FPGA kernel design: The blocks that require users’ customisation are darkened.
The dotted box covers the blocks that are optional on FPGAs.

also allow changing the values of itl outer, itl inner and NP at run-time. It is because these

parameters only affect the length of the particle streams, but not the hardware data-path. The

computation engine is fully pipelined and outputs one result per clock cycle.

Figure 5.3 shows the design of the FPGA kernel. Blocks that require customisation are dark-

ened. The sampling function in Code 2 is mapped to the Sampling block which accepts a

state and a reference on each clock cycle and calculates the next state on the prediction horizon.

After getting a state from the CPU at the beginning (itl inner = 0 and H = 0), the data will

be used by the kernel itl inner ·NP times. An optional state RAM enables reuse of state data

and improves performance when the value of itl inner is large. An array of LUT-based random

5.2. SMC Design Flow 113

number generators [115, 116] is seeded by the CPU to provide random variables; application

parameters are stored in registers; and a feedback path stores the state of the previous NP ·NA

cycles.

The Importance weighting block computes in three steps. Firstly, Score calculation uses

the states from the Next state block to calculate scores of all the states over the horizon. A

feedback loop of length NP · NA stores the cost of the previous horizon and accumulates the

values. Secondly, Constraint handling uses the states from the Next state block to check the

constraints. The block raises a fail flag if a constraint is violated. Lastly, Weight calculation

combines the scores of the states over the horizon.

Part of the resampling process is handled by the Resampling index generation and Weight

accumulation blocks. Weights are accumulated to calculate the cumulative distribution func-

tion, then particles indices are reordered. These two blocks can either be computed on FPGAs

or CPUs.

All the blocks allow precision customisation using fixed-point or floating-point number rep-

resentation. Users have the flexibility to make trade-off between result accuracy and design

complexity.

5.2.3 Performance Model

We derive a performance model to analyse the effect of parameters on the processing speed

as well as resource utilisation of the computation engine. It will be used in Section 5.3 for

parameter optimisation.

The processing time of a time-step is shown in Equation 5.1. It has four components which are

iterated itl outer times.

Tstep =itl outer · (Ts&i + Tresample + Tcpu + Ttran) . (5.1)

Ts&i is the time spent on sampling and importance weighting in the FPGA kernels.

114 Chapter 5. Design Flow for Domain-specific Reconfigurable Applications

Ts&i =
itl inner ·NP ·NA ·H

NC ·Nboard · freq
·min

(
1,

BWbus

sizeof(state) · freq

)
. (5.2)

Since the data is organised as a stream as described in Section 5.2.2, the time spent on sampling

and importance weighting is linear with NP , NA and H. It is iterated itl inner times in the

inner loop. The sampling and importance weighting process can be accelerated using multiple

cores, such that each of them is responsible for part of the inner loop iterations or particles. NC

represents the number of processing cores being used on one FPGA, and Nboard is the number

of FPGA boards being used. freq is the clock frequency of the processing cores. BWbus is

the bandwidth of the bus connecting CPU to FPGA. min(1, BWbus

sizeof(state)·freq
) accounts for the

limitation of bandwidth between FPGAs and CPUs. BWbus

sizeof(state)·freq
models the case when the

data throughput of FPGAs exceeds the bandwidth of the bus.

Tresample is the time spent on generating the resampling indices.

Tresample =
NP · PW +NP ·NA + 3 · PL ·NP

freq
. (5.3)

It takes NP ·PW +NP ·NA cycles to generate the cumulative probability distribution function,

and a further 3 ·PL ·NP cycles to generate particle indices. PW and PL are the length of the

pipelines. Tresample can be omitted if resampling is processed by the CPUs.

Assume that the CPU is dedicated to particle set resizing and resampling, and the computation

time scales linearly with the data size. Tcpu is the time spent on resampling and updating the

current state on the CPUs.

Tcpu = α ·H ·NP ·NA. (5.4)

The time is related to the amount of data and the speed of the CPU. α is the scaling factor of

the CPU speed. By running the software with different values of H ·NP ·NA, α is the scaling

factor determined by regression.

5.3. Optimising SMC Computation Engine 115

Table 5.1: Parameters of the performance model.

itl outer Number of iterations of the outer loop
itl inner Number of iterations of the inner loop

NP Number of particles
NA Number of agents under control
NC Number of processing cores being used on one FPGA

Nboard Number of FPGA boards in the system
H Prediction horizon
freq Clock frequency of the processing core

BWbus Bandwidth of the bus connecting the CPU to FPGA
PW Length of the pipeline
PL Length of the pipeline
α Empirical constant of CPU speed

Ttran is the data transfer time that accounts for the time taken to transfer the state stream

between CPUs and DRAM on an FPGA board. Ttran can be omitted if no DRAM is used.

Ttran =
NP ·NA · (H · sizeof(state))

BWbus

. (5.5)

Table 5.1 summerises the parameters used in the performance model. In Section 5.3.3, the

parameter optimisation process will use this model to estimate the computation time of different

implementations.

5.3 Optimising SMC Computation Engine

The design parameters in Table 2.1 have great impact on the performance. Three questions

manifest when finding optimised customisation of the engine: (1) Which sets of parameter

values give rise to higher accuracy results in the solution? Increasing NP and itl outer

improves Root-Mean-Square Error (RMSE), however, is the improvement linear? (2) For a

given accuracy of the solution, which sets of parameter values satisfy the real-time

timing requirement? Using more than enough particles does not improve accuracy but make

the computation engine fail the real-time timing requirement. (3) The above two questions

leads to a huge design space, how can we reduce the design parameter exploration

time? This section discusses some techniques about parameter optimisation.

116 Chapter 5. Design Flow for Domain-specific Reconfigurable Applications

5.3.1 Compile-time Parameters

Referring to Table 2.1 in Chapter 2, the SMC computation engine has up to six design parame-

ters, each of which adds a dimension to the design space. It is ineffective to exhaustively search

for the best set of parameters. Furthermore, the performance curve of each dimension can be

non-linear and constrained by both the real-time requirement and FPGA resources.

To answer questions 1 and 2, consider the robot localisation application. Its solution quality is

measured by RMSE in localisation [90]. We study the effect of changing design parameters using

the functional specification in Figure 5.1, e.g. a C program. Software functional specification

has fast build time, and it helps us to perform analysis effectively. To meet real-time operation

requirement, software functional specification is too slow without acceleration of the SMC

computation engine. The run time of the computation engine is estimated by the timing model

described in Section 5.2.3.

When NP and itl outer are explored together as shown in Figure 5.4, we see an uneven surface.

Although non-linear, it is evident that RMSE decreases as NP and itl outer increase. The valid

parameter space is constrained by the real-time requirement: the parameter space is darkened

for those parameters leading to an RMSE greater than 1 m (Question 1); the dark region with

a run-time longer than the 5 seconds real-time requirement is marked as invalid (Question 2).

If the value of S (scaling factor for the standard deviation of noise) is also considered, the

parameter optimisation problem expands to three dimensions as shown in Equation 5.6:

minimise RMSE = localisation(NP , itl outer, S),

subject to RMSE ≤ 1 m, Tstep ≤ 5s.

(5.6)

5.3.2 Run-time Parameters

In Chapter 4, we proposed an algorithm which changes the number of particles based on run-

time condition. The computation workload decreases with the number of particles and hence

introduces an idle period between the finishing time of computation and the end of real-time

5.3. Optimising SMC Computation Engine 117

 2
 4

 6
 8

 10
 12

 14

 0
 2000

 4000
 6000

 8000
 10000

 12000
 14000

 0

 2

 4

 6

 8

 10

RMSE (m)

itl outer

Np

RMSE (m)

Figure 5.4: Parameter space of robot localisation system (NA=8192, S=1): The dark region
on the top-right indicates designs which fail localisation accuracy constraints, while those on
the bottom-left indicates designs which fail real-time requirements.

interval. The power consumption during the idle period is reduced by reconfiguring the FPGAs

to a low-power mode, where the FPGAs run at a lower frequency and stop doing computation.

The run-time reconfiguration and parameter adaptation are applied to the proposed SMC

computation engine in this chapter. For convenience, Algorithm 4 recaptures the approach,

with modifications made to cope with the generalised computation engine. In particular, an

inner loop itl inner is included to deal with multiple iteration of sampling and importance

within a time-step. ÑPt+1 describes the lower bound of particle size which is used in Algorithm 4:

ÑPt+1 = σ2 ·
NPmax

V ar({χ̃(i)
t+1}

NPt

i=1)
. (5.7)

Figure 5.5 illustrates the effect of adapting parameters at run-time. Power consumption is

reduced by reconfiguring the FPGAs to sleep mode, at the expense of reconfiguration overhead.

118 Chapter 5. Design Flow for Domain-specific Reconfigurable Applications

Algorithm 4 Adaptive SMC algorithm
1: NP0

← NPmax

2: {s
(i)
0 }

NP0
i=1 ←random set of particles

3: t← 1
4: for each step t do
5: idx1← 0
6: Initialisation
7: while idx1 ≤ itl outer do

8: idx2← 0
9: itl inner ← f(idx1)
10: —On FPGAs—
11: while idx2 ≤ itl inner do

12: Sample a new state {s
′(i)
t+1}

NPt

i=1 from {s
(i)
t }

NPt

i=1

13: Calculate unnormalised importance weights {w′(i)}
NPt

i=1 and accumulate the weights as wsum

14: idx2← idx2 + 1
15: end while

16: Calculate the lower bound of sample size ÑPt+1
by Equation 5.7

17: —On CPUs—
18: Sort {s

′(i)
t+1}

NPt

i=1 in descending {w′(i)}
NPt

i=1

19: if ÑPt+1
< NPt

then

20: NPt+1
= max

(
⌈ÑPt+1

⌉, NPt
/2
)

21: Set a = 2NPt+1
−NPt

and b = NPt+1

22: –Do the following loop in parallel–
23: for i in NPt

−NPt+1
do

24: s
′(i)
t+1 =

s
′(a)
t+1w

′(a)+s
′(b)
t+1w

′(b)

w′(a)+w′(b)

25: w′(i) = w′(a) + w′(b)

26: a = a+ 1 and b = b− 1
27: end for

28: else if ÑPt+1
≥ NPt

then

29: a = 0 and b = 0
30: for i in NPt+1

−NPt
do

31: if w′(a) < w′(a+1) and a < NPt+1
then

32: a = a+ 1
33: end if

34: s
′(NPt

+b)
t+1 = s

′(a)
t+1/2

35: s
′(a)
t+1 = s

′(a)
t+1/2

36: w′(NPt
+b) = w′(a)/2

37: w′(a) = w′(a)/2
38: b = b+ 1
39: end for

40: end if

41: idx1← idx1 + 1
42: if idx1 ≤ itl inner then

43: Resample {s
′(i)
t+1}

NPt

i=1 to {s
(i)
t+1}

NPt+1

i=1
44: end if

45: end while

46: Update
47: end for

5.3. Optimising SMC Computation Engine 119

Figure 5.5: Power consumption of the reconfigurable system with reconfiguration to low-power
mode during idle

5.3.3 Parameter Optimisation

Now we come to question 3, the parameter optimisation problem, which is difficult as con-

struction of an analytical model combining timing and quality of solution is either impossible

or very time consuming. Furthermore the design space is constrained by multiple accuracy

and real-time requirements. We cannot use a design unless the results are within certain error

bound. The problem is further aggravated by the curse of dimensionality. To address this

problem, we aim to use an automated design space exploration approach which allows the per-

formance impact of different parameters to be determined for any design based on our SMC

computation engine. Although various algorithms exist for design space exploration, algorithms

such as exhaustive search and hill climbing [117], are impractical. They require hundreds of

designs to be evaluated, while each design takes hours to build and run. Other algorithms like

mathematical programming [118] or gradient descent [119] assume convexity and continuity of

the underlying problem, which requires manual calibration by the designer. In this work, we

use an approach which is facilitated by a machine learning algorithm developed in [1]. It does

not require the designer to tune the algorithm, and a surrogate model is employed to enable

rapid learning of the valid design space and to deal with a large number of parameters.

120 Chapter 5. Design Flow for Domain-specific Reconfigurable Applications

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10

O
b
je

ct
iv

e
fu

n
ct

io
n

Parameter

(a)

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10

invalid region

O
b
je

ct
iv

e
fu

n
ct

io
n

Parameter

(b)

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10

invalid region

expected improvement

O
b
je

ct
iv

e
fu

n
ct

io
n

Parameter

(c)

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10

invalid region

expected improvement

new parameter set

O
b
je

ct
iv

e
fu

n
ct

io
n

Parameter

(d)

Figure 5.6: Illustration of automatic parameter optimisation (adapted from [1]): (a) Sam-
pling parameter sets; (b) Building surrogate model; (c) Calculating expected improvement; (d)
Moving to the point offering the highest improvement.

The idea is illustrated in Figure 5.6. Firstly, a number of randomly sampled designs is evaluated

(Figure 5.6(a)). Secondly, the results obtained during evaluations are used to build a surrogate

model. The model provides a regression of a fitness function and identifies regions of the

parameter space which fail any of the constraints (Figure 5.6(b)). Thirdly, the surrogate model

output is used to calculate the expected improvement (Figure 5.6(c)). Finally, the exploration

converges to the parameter set that is expected to offer the highest improvement. Parameter

sets in the invalid region are disqualified (Figure 5.6(d)).

Our SMC computation engine is made customisable to benefit from this optimisation approach

which is also applicable to CPUs and GPUs.

5.4. Evaluation 121

5.4 Evaluation

5.4.1 Design Productivity

We first analyse how the proposed design flow can reduce design effort. In Table 5.2, user-

customisable code is classified into three parts: (a) Def is the definition of state, reference and

parameters. (b) FPGA Func is the description of sampling and importance weighting functions.

(c) CPU Func is the initiation, resampling and update part running on CPU. On average, users

only need to customise 24% of the source code. Moreover, automatic design space optimisation

greatly saves the overall design time. As we will see in the applications below, we are able to

choose the optimal set of parameters without conducting an exhaustive search.

Table 5.2: Lines of code for two SMC applications under the proposed design flow.

Custom code
Def FPGA Func CPU Func All code Custom %

Robot localisation 54 143 56 1,113 22.7
Air traffic management 45 360 70 1,360 35.0

5.4.2 Application 1: Mobile Robot Localisation

Our design flow is used in targeting a robot localisation application to a Xilinx Virtex-6

XC6VSX475T FPGA. Two processing cores clocked at 120 MHz are instantiated in the FPGA.

Core computation in the sampling and importance weighting process is implemented using

fixed-point arithmetic to optimise resource usage. The implementation utilises 148,431 LUTs

(50%), 1,278 DSPs (63%) and 549 block RAMs (26%).

The design space has three dimensions: itl outer, NP and S. Out of 945 sets of parameters, 52

sets are evaluated to minimise the localisation error within the 5 seconds real-time constraint.

Table 5.3 compares the performance of our reconfigurable system with CPU, GPU and a pre-

vious system in [25] which has not been optimised by our proposed approach. With parameter

tuning that maximises accuracy, our work achieves a better RMSE than the previous work

122 Chapter 5. Design Flow for Domain-specific Reconfigurable Applications

(0.15m vs. 0.52m). In other words, parameter tuning improves accuracy by 3.5 times. GPU

is also optimised using the same set of parameters, but it consumes double the power of our

reconfigurable system. Compared to CPU, FPGA is 24 times more accurate. It is because

CPU has lower performance, and a different set of parameters is applied to meet the 5 seconds

real-time requirement at an expense of accuracy.

Table 5.3: Performance comparison of robot localisation.

CPU This work Ref. sys. [25] GPU
opt. a opt. b w/o opt. b opt. c

Clock frequency (MHz) 2,930 120 100 1,150
Number of cores 4 2 2 448

Run-time / step (s) 5.0 3.7 1.6 4.5
RMSE (m) 3.64 0.15 0.52 0.15
Power (W) 130 145 145 287
a Intel Core i7 870 CPU, optimised by Intel Compiler with SSE4.2 and flag -fast enabled.
b Maxeler MaxWorkstation with Xilinx Virtex-6 XC6VSX475T FPGA and Intel Core i7 870 CPU, developed

using MaxCompiler.
c NVIDIA Tesla C2070 GPU, developed using CUDA programming model.
d Parameters with optimisation for FPGA and GPU: itl outer=2, NP=14000, S=1.2;

Parameters with optimisation for CPU: itl outer=1, NP=3000, S=1;
Parameters without optimisation: itl outer=1, NP=8192, S=1.

In this application, the number of particles are adapted to the run-time environment. Figure 5.7

shows the effect of the number of particles on the computation time. The largest amount of

particles are used to determine the robot’s initial location (known as global localisation). Then

the number of particles needed decreases sharply, only a small amount of particles are used to

keep tracking the robot’s movement. Reduction in the number of particles implies decrease in

the computation time, and hence results in a longer idle time when the FPGA runs in low-power

mode.

The effect of running the FPGA in low-power mode is shown in Figure 5.8. The power of FPGA

peaks at 135W when in compute-mode and drops to 95W when in idle-mode. Short periods of

110W are observed when the FPGA is switching between the two modes. The power of CPU

and GPU are also shown in the figure. The low power of FPGA allows the mobile robot to

benefit from a longer uptime when it runs on battery power.

5.4. Evaluation 123

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 0 20 40 60 80 100 120 140
 0.001

 0.01

 0.1

 1

 10

 100

 1000

N
u

m
b

e
r

o
f

p
a

rt
ic

le
s
 N

p
t

C
o

m
p

o
n

e
n

ts
 o

f
c
o

m
p

u
ta

ti
o

n
 t

im
e

 (
s
)

Wall-clock time (s)

Idle time
No. of particles

Data transfer time
Data path time

CPU time

Figure 5.7: Number of particles and components of total computation time versus wall-clock
time

 0

 100

 200

 300

 400

 500

 600

 700

 0 5 10

P
o

w
e

r
(W

)

Run-time (s)

CPU
GPU

This work

Figure 5.8: Power consumption of reconfigurable system, CPU and GPU in one time-step

5.4.3 Application 2: Air Traffic Management

The air traffic management system is able to control 20 aircraft simultaneously. The FPGA part

runs on a 1U machine hosting 6 Altera Stratix V GS 5SGSD8 FPGAs clocked at 220 MHz, each

of which has a single precision floating-point data-path that consumes 166,008 LUTs (63%), 337

multipliers (9%) and 1,528 block RAMs (60%). The CPU part runs on 2 Intel Xeon E5-2640

CPUs clocked at 2.53GHz. Both parts are connected via InfiniBand.

124 Chapter 5. Design Flow for Domain-specific Reconfigurable Applications

This application has four design parameters leading to a space with 4000 sets of parameters.

The optimisation target is to minimise the time of aircraft spending in the air traffic control

region, i.e. the number of time-steps required for all aircraft to reach their destinations. Each

time-step is subject to a real-time requirement of 30 seconds. The machine learning approach

reduces the number of evaluations to 1% as indicated in Table 5.4. Hence, the parameter

optimisation time is reduced from days to hours.

Table 5.4: Parameter optimisation of air traffic management system using machine learning
approach.

NA
Parameter sets Parameter set obtained

Evaluated / Total itl outer H NP S

4 41 / 4000 20 5 500 0.1
20 31 / 4000 100 8 5000 0.05

Table 5.5: Performance comparison of air traffic management.

CPU GPU This work Ref. FPGA [33]
w/ opt. aw/ opt. b w/ opt. c w/o opt. d

Clock frequency (MHz) 2,660 1,150 220 150
Number of cores 24 1,792 6 5
Power (W) 550 1100 600 N/A

4 Run-time / step (s) 0.80 0.12 0.03 2.2
aircraft Total steps 25 25 25 25

20 Run-time / step (s) Failed 28.25 11.6 N/A
aircraft Total steps Failed 41 41 N/A
a 4 Intel Xeon X5650 CPUs (scaled), optimised by Intel Compiler with SSE4.2 and flag -fast enabled.
b 4 NVIDIA Tesla C2070 GPUs (scaled), developed using CUDA programming model.
c Maxeler MPC-X2000, with 6 Altera Stratix V GS 5SGSD8 FPGAs and 2 Intel Xeon X5650 CPUs,

developed using MaxCompiler.
d Altera Stratix IV EP4SGX530 FPGA.
e Parameters with optimisation: refer to Table 5.4;

Parameters without optimisation: itl outer=100, NP=1024, S=0.05, H=6.

Table 5.5 summarises the performance of the CPU, GPU and reconfigurable system. To ensure

fair comparisons, we scale the CPU and GPU systems to similar form factors with the recon-

figurable system. The scaling is based on the fact that the sampling and importance weighting

process are evenly distributed to every GPU and computed independently, while the resam-

pling process is computed on the CPU no matter how many GPUs are used. The reconfigurable

platform is faster and more energy efficient than the other systems.

In the case with 4 aircraft, all systems are able to finish with the minimal number of steps

5.5. Summary 125

without violating the real-time requirement of 30 seconds per step. However, for the case with

20 aircraft, CPU fails to obtain a parameter set which gives a valid solution within 30 seconds.

We also compare the performance of our work with a reference implementation that uses an

Altera Stratix IV FPGA [33]. That implementation is only large enough to support 4 aircraft

and it does not have the flexibility to tune parameters without re-compilation. Our design

exploration approach is able to select the set of parameters that produces the same quality of

results and is up to 73 times faster.

5.5 Summary

This chapter demonstrates the feasibility of generating highly-optimised reconfigurable designs

for SMC applications, while hiding detailed implementation aspects from the user. A software

template makes the computation engine portable and facilitates code reuse, the number of lines

of user-written code being decreased by approximately 76% for an application. We further

establish that a surrogate software model combined with machine learning can be used to

rapidly optimise designs, reducing optimisation time from days to hours; and that the resulting

parameters can be utilised without resynthesis.

Chapter 6

Conclusion

This thesis has described three contributions that enable more effective and efficient implemen-

tation of high-performance real-time applications on reconfigurable systems. In this concluding

chapter, we recap the key challenges and provide a summary of individual contributions and

the significance of each. Then we will describe the current limitations of this thesis and suggest

future research directions.

6.1 Summary of Achievements

An FPGA contains numerous prefabricated logic and routing resources which allow the func-

tionality and interconnection to be reconfigured. Many modern FPGAs have a high level

of integration with coarse grained components such as DSPs, memory blocks, high-throughput

transceivers, peripheral I/O, customisable IP blocks and micro-processor cores. Benefiting from

the reconfigurability and abundance of computation resource, FPGAs have been increasingly

adopted to designs with high performance requirements. FPGAs’ deterministic performance

also makes them preferable over CPUs and GPUs in real-time systems. However, FPGAs are

restricted in their floating-point computation capability and ability to design in mainstream

programming languages. In addition, the use of FPGA for real-time applications still lacks

focus on high-performance computing capability. This thesis works toward three key areas

126

6.1. Summary of Achievements 127

to address the above mentioned challenges, and makes use of a heterogeneous reconfigurable

system to get the best of both FPGA and CPU.

The computation capability of FPGAs is restricted by the number of logic components available.

Chapter 3 discusses how we take advantage of FPGAs’ programmability to fit more floating-

point operators to an FPGA chip. Instead of using standard IEEE floating-point arithmetic,

floating-point operators are implemented in reduced precision which consumes less logic resource

and allows higher degree of parallelism, higher clock frequencies and lower I/O bandwidth. The

accuracy loss introduced by reduced precision is compensated by re-computation on CPUs us-

ing the required output precision. This chapter proposes a novel data structure and a memory

architecture to interface the reduced precision domain on FPGA and the high precision do-

main on CPU. As a result, the accuracy of output is the same as an equivalent system fully

implemented with high precision data-paths. We demonstrate that an optimal precision can

be chosen that maximises performance by balancing the number of FPGA data-path and the

amount of re-computation on CPUs. The proposed methodology is applied to an image-guided

surgical robot application which employs the PQ process. The resultant implementation on the

reconfigurable system shows a significant speed-up over CPU, GPU and the same reconfigurable

system that has not applied our methodology.

FPGAs’ data-path can be customised and reconfigured for one particular application, so it usu-

ally demonstrates better power and energy efficiency compared to CPUs and GPUs. However,

the power of FPGAs cannot be neglected as they are increasingly used in the high performance

computing domain. Apart from traditional power saving techniques such as clock gating and

dynamic frequency/voltage scaling, Chapter 4 explores how the unique run-time reconfigurabil-

ity of FPGAs could be used as an efficient power saving technique. The proposed reconfigurable

system has two configurations, which allows the FPGA to run and switch between computa-

tion mode and low-power mode. In computation mode, the FPGA is clocked at the maximum

frequency and all the available resources are utilised to boost performance. In contrast, for low-

power mode, the FPGA is loaded with a configuration which has the slowest possible clock and

uses only the minimal amount of resource. The proposed run-time reconfiguration approach is

applied to a robot localisation application which employs adaptive SMC methods. Compared

128 Chapter 6. Conclusion

to a non-adaptive and non-run-time-reconfigurable system, the proposed approach reduces idle

power by 25-34% and the overall energy consumption by 17-33%.

Although techniques proposed in Chapter 3 and Chapter 4 enhance the computation and energy

efficiency of reconfigurable systems, the design complexity and compilation time of FPGA

applications far exceed that of CPUs and GPUs, making FPGAs difficult to be accepted by

mainstream application designers. Chapter 5 discusses the programmability challenges, and

describes a design flow which extends the SMC reconfigurable system mentioned in Chapter 4.

To make the proposed reconfigurable system more user-friendly, Chapter 5 focuses on making

the system parametrisable for a wide variety of SMC applications. A surrogate modelling-based

machine learning algorithm is employed to tune design parameters for improved performance

and solution quality. The design flow enables efficient mapping of applications to multiple

FPGAs, reduces design space exploration effort, and is capable of producing reconfigurable

implementations for a range of SMC applications. Significant improvement in speed and energy

efficiency are achieved over optimised CPU and GPU implementations.

To conclude, Figure 6.1 recaptures the thesis organisation chart in Chapter 1, and it shows the

connections of three contributions that enhance reconfigurable systems for real-time applica-

tions. Unique features of FPGA technology, in particular customisable precision in Chapter 3

and run-time reconfiguration in Chapter 4, have been applied to optimise reconfigurable real-

time systems. The long-standing programmability issues of FPGA has also been addressed

by a domain-specific design flow in Chapter 5. The enhanced computing capability brought

by reconfigurable technologies enlarges the set of compute-intensive algorithms that can have

realistic applications in daily life. For example in Chapter 3, we discusses the potential of

clinical setting in surgical robots. The use of customisable precision allows more sophisticated

models and higher update rates so that surgeons who use surgical robots are able to response

promptly. In Chapter 5, the design flow reduces the effort of implementing a high-performance

air traffic management system. In addition, the SMC computation engine provides sufficient

computing power in dealing with the growing demand of future air traffic. An efficient air traffic

management system reduces the level of human control, improves fuel consumption, decreases

the time of arrival of aircraft, and increases the capacity of airspace.

6.2. Future Work 129

Run-time Adaptation

(Chapter 4)

Design Flow

(Chapter 5)

Precision Optimisation

(Chapter 3)

Reconfigurable Real-time Systems

Figure 6.1: Thesis contributions.

6.2 Future Work

This section will elaborate on the current limitations of this thesis, and suggest directions in

which future research can address them.

6.2.1 Proximity Query Formulation

The work in Chapter 3 shows the acceleration of PQ with reconfigurable system. PQ has

substantial potential in medial surgery which involves human-robot collaborative control. The

proposed reduced precision approach can be extended to cover applications which could not

be applied to clinical setting due to complex models and stringent real-time requirements.

One example is image-guided catheterisation as illustrated in Figure 6.2. To deal with rapid

deformation of the heart and the associated blood vessels, it is vitally important to provide

the operator of surgical robot online guidance in real time, for which fast and efficient PQ

computation is essential. The current implementation of PQ has three limitations that can be

improved in the future:

• PQ is currently modelled with points and contours, for example in minimal invasive

heart surgery, the surgical instrument is described by a cloud of points and the aorta

vessel is modelled by a series of contours. The data structure and memory buffer are

130 Chapter 6. Conclusion

designed specifically for this point-contour model. In the future, the PQ formulation can

be extended to point-point model to maximise the flexibility. Such an extended model will

increase the computation requirement, thus a faster reconfigurable system is necessary.

• The proposed heterogeneous reconfigurable system connects FPGAs and CPUs via the

PCI Express bus. Data accessed by FPGAs have to be copied from the main memory

hosted by CPUs, and vice versa. The performance of such decoupled heterogeneous ar-

chitecture is restricted by high latency and limited bandwidth. In the future, we can

investigate closely-coupled platform where CPU and FPGA fabric lie in the same board

or even the same chip. One example is SoC-FPGA introduced by Altera [4] and Xilinx [5].

Figure 6.3 shows the block diagram of an Altera SoC-FPGA which integrates an ARM-

based hard processor, input/output peripherals, memory interfaces and FPGA fabric.

Advanced Microcontroller Bus Architecture (AMBA) provides high throughput intercon-

nect between CPUs and FPGAs. This closely-coupled platform follows the topologies de-

scribed in Figure 1.1. The FPGAs partition acts as a deterministic real-time co-processor

which connects to peripherals. The ARM processor runs a RTOS to serve real-time

requests in software.

• At present, the run-time reconfiguration is done on full chip basis, which means that

the entire FPGA is loaded with a new bit-stream each time it is reconfigured. On our

targeting platform, full chip reconfiguration takes around one second, which precludes

its usage in many applications that require fast response time. In Chapter 3, we try to

overcome this drawback by reconfiguring one FPGA at a time while keeping the remaining

FPGAs operating. This method needs multiple FPGA boards to support individual

reconfiguration. It is worth investigating partial reconfiguration technique, where only

a subset of the design is changed at run-time. To do this, the design is partitioned

into two regions. The critical sections of the data-path, such as those having reduced

precision arithmetic, are run-time reconfigurable. The remaining parts, such as PCI

Express interface and memory controller, can be kept static. Instead of disabling an

entire FPGA board for reconfiguration, the proposed scheme still allows some data-paths

to be functioning during reconfiguration.

6.2. Future Work 131

������������������

���
�������

	�����

Figure 6.2: Image-guided catheterisation: Perform PQ based on a beating heart model, where
light blue bubbles represent the control points registered on the surface and yellow spheres
indicate the control points forming the centre line of the pathway [2].

Figure 6.3: Altera SOC which integrates an ARM-based hard processor, peripherals, memory
interfaces and FPGA fabric [3].

6.2.2 Adaptive Sequential Monte Carlo Methods

In Chapter 4, the proposed reconfigurable system switches between computation mode and low-

power mode. Currently, the system performance is restricted by full-chip reconfiguration, as it

consumes time and energy, shortens idle time, and keeps applications which require fast response

time away from this system. In fact, PCI Express interface and memory controller should be

in place for both configurations as these components are crucial to maintain functionality. To

reduce reconfiguration overhead, these components need not to be reconfigured.

132 Chapter 6. Conclusion

FPGAs

CPUs

FPGA-CPU

interconnect

Inter-FPGA

connection

Clock-gated Logic

Memory and Interconnect

Controller

DFS Logic

Partially Reconfigurable

Logic

Figure 6.4: Different schemes to put FPGA to sleep.

Apart from partial reconfiguration, the fixed computation interval of real-time system can be

exploited by other power saving techniques as summarised in Figure 6.4:

• Dynamic Frequency Scaling (DFS): Instead of the “best-effort” approach which finishes

the computation as quickly as possible (Figure 6.5(a)), we can use a “just-in-time” ap-

proach (Figure 6.5(b)) which lowers the clock speed to an extent that the system could

finish just within the real-time interval. To enable this approach, effective and efficient

real-time scheduling should be studied to guarantee meeting real-time requirement.

• Clock gating: This is a common power optimisation technique employed in both Appli-

cation-Specific Integrated Circuit (ASIC) and FPGA designs to eliminate unnecessary

switching activity and thus dynamic power consumption. To enable clock gating, de-

signers need to add additional gating components to the RTL code. The added compo-

nents disable unnecessarily active sequential elements which need not to switch states.

In ASICs, the clock nets that distribute the clocks to all sequential elements are built

6.2. Future Work 133

Input Datapath Output
CPU

Trt

Idle

TComp TIdle

(a)

Input Datapath Output CPU

Trt

TComp

(b)

Figure 6.5: (a) Best-effort adaptive scheme described in Chapter 4; (b) Just-in-time adaptive
scheme.

specifically for each device. The clock nets can be added with any gating component to

gate particular groups of clocks, and the delays introduced by these gating components

are specifically handled. In FPGAs, the clock nets are fixed because dedicated nets and

buffers are responsible for distributing the clocks to all logic elements. To disable a clock

net without introducing glitches, or to switch a clock net between two clock frequencies,

designer needs to allocate global clock buffers carefully. Static circuit and gated circuit

can be assigned to different global clock buffers, but the number of global clock buffers

are limited and using too many of them can potentially draw more power than that saved

by clock gating.

As mentioned earlier in this chapter, the proposed heterogeneous reconfigurable system consists

of FPGAs and CPUs which are not closely coupled. In Chapter 4, particle data are transferred

frequently between FPGAs fabric and CPUs, and hence significant processing time and power

consumption are introduced. The above mentioned SoC-FPGA device (Figure 6.3) with closely-

coupled CPUs and FPGA fabric has promising opportunities. An RTOS, such as VxWorks [120]

or MicroC/OS-II [121], can run on the CPUs to guarantee real-time capability.

The SMC design flow described in Chapter 5 can be extended for better accessibility and user-

friendliness. At present, only application-specific parameters, such as the number of particles

134 Chapter 6. Conclusion

and the number of iterations, are being considered in the optimisation approach. The advan-

tage is that the parameters can be studied using a software model, which is fast as no hardware

generation is involved. On the flip side, the effect of device-specific parameters, such as the

precision of number format, the level of parallelism and the clock speed, are not taken into

account. Human intervention is still required when tuning device-specific parameters for a

new design. Optimising application-specific and device-specific parameters together can pro-

vide more promising results. For example, we can reduce the precision of number format but

compensate the loss in accuracy by using more particles. However, there are challenges when

bringing in device-specific parameters to the optimisation approach. In particular, the optimi-

sation time will be significantly longer because the time required to generate and benchmark

the hardware configurations is extremely long, and these new parameters introduces more di-

mensions to the optimisation space. To address these challenges, an initial study has been

conducted in [1], where an ARDEGO algorithm is proposed to offer automatic optimisation

of device-specific parameters in reconfigurable designs. The time spent on hardware genera-

tion is reduced by only exploring the parameters that are most likely to give better results,

rather than doing exhaustive search. Lastly, to make our proposed design flow more accessible

and usable to software programmer, the design flow can be enhanced. It will allow genera-

tion of both hardware and software from designs captured in software programming languages

(e.g. R, MATLAB) to reconfigurable implementations, and extend the software template in

VHDL/Verilog to support a wider range of systems apart from the current Maxeler platform.

Bibliography

[1] M. Kurek, T. Becker, T. C. P. Chau, and W. Luk, “Automating optimization of reconfig-

urable designs,” in Proceedings of International Symposium Field-Programmable Custom

Computing Machines, 2014, 201-213.

[2] K.-W. Kwok, K. H. Tsoi, V. Vitiello, J. Clark, G. C. T. Chow, W. Luk, and G.-Z. Yang,

“Dimensionality reduction in controlling articulated snake robot for endoscopy under

dynamic active constraints,” IEEE Transactions on Robotics, vol. 29, no. 1, pp. 15–31,

2013.

[3] “Cyclone V SoCs hard processor system,” http://www.altera.com/devices/fpga/

cyclone-v-fpgas/hard-processor-system/cyv-soc-hps.html, 2014.

[4] “Cyclone V SoCs: Lowest system cost and power,” http://www.altera.com/devices/

processor/soc-fpga/cyclone-v-soc/cyclone-v-soc.html, 2014.

[5] “Zynq-7000 all programmable SoC,” http://www.xilinx.com/products/silicon-devices/

soc/zynq-7000/, 2014.

[6] G. C. T. Chow, K. W. Kwok, W. Luk, and P. H. W. Leong, “Mixed precision processing in

reconfigurable systems,” in Proceedings of International Symposium Field-Programmable

Custom Computing Machines, 2011, pp. 17–24.

[7] G. C. T. Chow, A. H. T. Tse, Q. Jin, W. Luk, P. H. Leong, and D. B. Thomas, “A

mixed precision Monte Carlo methodology for reconfigurable accelerator systems,” in

Proceedings of International Symposium on Field Programmable Gate Arrays, 2012, pp.

57–66.

135

http://www.altera.com/devices/fpga/cyclone-v-fpgas/hard-processor-system/cyv-soc-hps.html
http://www.altera.com/devices/fpga/cyclone-v-fpgas/hard-processor-system/cyv-soc-hps.html
http://www.altera.com/devices/processor/soc-fpga/cyclone-v-soc/cyclone-v-soc.html
http://www.altera.com/devices/processor/soc-fpga/cyclone-v-soc/cyclone-v-soc.html
http://www.xilinx.com/products/silicon-devices/soc/zynq-7000/
http://www.xilinx.com/products/silicon-devices/soc/zynq-7000/

136 BIBLIOGRAPHY

[8] Z. Guo, W. Najjar, F. Vahid, and K. Vissers, “A quantitative analysis of the speedup

factors of FPGAs over processors,” in Proceedings of International Symposium on Field

Programmable Gate Arrays, 2004, pp. 162–170.

[9] S. Craven and P. Athanas, “Examining the viability of FPGA supercomputing,”

EURASIP Journal on Embedded Systems, vol. 2007, no. 1, p. 13, 2007.

[10] O. Pell and O. Mencer, “Surviving the end of frequency scaling with reconfigurable

dataflow computing,” ACM SIGARCH Computer Architecture News, vol. 39, no. 4, pp.

60–65, 2011.

[11] M. J. McGowan, “The rise of computerized high frequency trading: use and controversy,”

Duke L. & Tech, 2010.

[12] K.-W. Kwok, V. Vitiello, and G.-Z. Yang, “Control of articulated snake robot under

dynamic active constraints,” in Proceedings of International Conference Medical image

computing and computer-assisted intervention, 2010, pp. 229–236.

[13] F. Dellaert et al., “Monte Carlo localization for mobile robots,” in Proc. Int. Conf.

Robotics and Automation, 1999, pp. 1322–1328.

[14] E. Crisostomi et al., “Combining Monte Carlo and worst-case methods for trajectory

prediction in air traffic control: A case study,” in Proc. Eurocontro Innovative Research

Workshop and Exhibition, 2007.

[15] A. Eele and J. M. Maciejowski, “Comparison of stochastic optimisation methods for

control in air traffic management,” in Proceedings of IFAC World Congress, 2011.

[16] R. Paul, S. Saha, S. Sau, and A. Chakrabarti, “Real time communication between multiple

FPGA systems in multitasking environment using RTOS,” in Proceedings of International

Conference on Devices, Circuits and Systems, 2012, pp. 130–134.

[17] M. Schoeberl, “A Java processor architecture for embedded real-time systems,” Journal

of Systems Architecture, vol. 54, no. 1-2, pp. 265–286, 2008.

BIBLIOGRAPHY 137

[18] J. Whitham and N. Audsley, “The scratchpad memory management unit for Microblaze:

Implementation, testing, and case study,” University of York, Tech. Rep. YCS-2009-439,

2009.

[19] Drive-On-Chip Reference Design, Altera, 2014.

[20] A. Burns and A. J. Wellings, Real-Time Systems and Programming Languages:, 3rd ed.

Addison Wesley, 2001.

[21] R. I. Davis and A. Burns, “A survey of hard real-time scheduling for multiprocessor

systems,” ACM Computing Surveys, vol. 43, no. 4, pp. 35:1–35:44, 2011.

[22] P. Puschner and A. Burns, “A review of worst-case execution-time analysis (editorial),”

Real-Time Systems, vol. 18, no. 2/3, pp. 115–128, 2000.

[23] T. C. P. Chau, K.-W. Kwok, G. C. T. Chow, K. H. Tsoi, Z. Tse, P. Y. K. Cheung,

and W. Luk, “Acceleration of real-time proximity query for dynamic active constraints,”

in Proceedings of International Conference on Field-Programmable Technology, 2013, pp.

206–213.

[24] T. C. P. Chau, X. Niu, A. Eele, W. Luk, P. Y. K. Cheung, and J. M. Maciejowski, “Het-

erogeneous reconfigurable system for adaptive particle filters in real-time applications,”

in Proceedings of International Symposium Applied Reconfigurable Computing, 2013, pp.

1–12.

[25] T. C. P. Chau, X. Niu, A. Eele, J. M. Maciejowski, P. Y. K. Cheung, and W. Luk, “Map-

ping adaptive particle filters to heterogeneous reconfigurable systems,” ACM Transactions

on Reconfigurable Technology and Systems, 2014, accepted.

[26] T. C. P. Chau, M. Kurek, J. S. Targett, J. Humphrey, G. Skouroupathis, A. Eele, J. Ma-

ciejowski, B. Cope, K. Cobden, P. Leong, P. Y. K. Cheung, and W. Luk, “SMCGen:

Generating reconfigurable design for sequential Monte Carlo applications,” in Proceed-

ings of International Symposium on Field-Programmable Custom Computing Machines,

2014, pp. 141–148.

138 BIBLIOGRAPHY

[27] G. Stitt, “Are field-programmable gate arrays ready for the mainstream?” IEEE Micro,

vol. 31, no. 6, pp. 58–63, 2011.

[28] “The Green500 list,” http://www.green500.org/, 2014.

[29] “What is difference between deep and deeper sleep states?” http://www.intel.com/

support/processors/sb/CS-028739.htm, 2014.

[30] “Intel Turbo Boost Technology 2.0,” http://www.intel.com/content/www/us/en/

architecture-and-technology/turbo-boost/turbo-boost-technology.html, 2014.

[31] “AMD Enduro power management technologies,” http://www.amd.com/en-us/

innovations/software-technologies/enduro, 2014.

[32] “NVIDIA PowerMizer technology,” http://www.nvidia.com/object/feature powermizer.

html, 2014.

[33] T. C. P. Chau, J. S. Targett, M. Wijeyasinghe, W. Luk, P. Y. K. Cheung, B. Cope,

A. Eele, and J. M. Maciejowski, “Accelerating sequential Monte Carlo method for real-

time air traffic management,” SIGARCH Computer Architecture News, vol. 41, no. 5,

2013.

[34] A. Eele, J. M. Maciejowski, T. C. P. Chau, and W. Luk, “Parallelisation of sequential

Monte Carlo for real-time control in air traffic management,” in Proceedings of Interna-

tional Conference Decision and Control, 2013.

[35] ——, “Control of aircraft in the terminal manoeuvring area using parallelised sequential

Monte Carlo,” in Proceedings of AIAA Conference on Guidance, Navigation, and Control,

2013.

[36] T. C. P. Chau, W. Luk, P. Y. K. Cheung, A. Eele, and J. M. Maciejowski, “Adaptive se-

quential Monte Carlo approach for real-time applications,” in Proceedings of International

Conference Field Programmable Logic and Applications, 2012, pp. 527–530.

http://www.green500.org/
http://www.intel.com/support/processors/sb/CS-028739.htm
http://www.intel.com/support/processors/sb/CS-028739.htm
http://www.intel.com/content/www/us/en/architecture-and-technology/turbo-boost/turbo-boost-technology.html
http://www.intel.com/content/www/us/en/architecture-and-technology/turbo-boost/turbo-boost-technology.html
http://www.amd.com/en-us/innovations/software-technologies/enduro
http://www.amd.com/en-us/innovations/software-technologies/enduro
http://www.nvidia.com/object/feature_powermizer.html
http://www.nvidia.com/object/feature_powermizer.html

BIBLIOGRAPHY 139

[37] X. Niu, T. C. P. Chau, Q. Jin, W. Luk, and Q. Liu, “Automating elimination of idle

functions by run-time reconfiguration,” in Proceedings of International Symposium on

Field-Programmable Custom Computing Machines, 2013, pp. 97–104.

[38] T. C. P. Chau, W. Luk, and P. Y. K. Cheung, “Roberts: Reconfigurable platform for

benchmarking real-time systems,” SIGARCH Computer Architecture News, vol. 40, no. 5,

2012.

[39] “Nios II Processor,” http://www.altera.com/devices/processor/nios2/ni2-index.html,

2014.

[40] “Microblaze soft processor core,” http://www.xilinx.com/tools/microblaze.htm, 2014.

[41] S. Trimberger, D. Carberry, A. Johnson, and J. Wong, “A time-multiplexed FPGA,”

in Proceedings of International Symposium on Field-Programmable Custom Computing

Machines, 1997, pp. 22–28.

[42] T. Fujii, K.-i. Furuta, M. Motomura, M. Nomura, M. Mizuno, K.-i. Anjo, K. Wakabayashi,

Y. Hirota, Y.-e. Nakazawa, H. Ito, and M. Yamashina, “A dynamically reconfigurable

logic engine with a multi-context/multi-mode unified-cell architecture,” in Proceedings of

International Solid-State Circuits Conference, 1999, pp. 364–365.

[43] J. R. Hauser and J. Wawrzynek, “Garp: A mips processor with a reconfigurable co-

processor,” in Proceedings of International Symposium on Field-Programmable Custom

Computing Machines, 1997, p. 12.

[44] Z. A. Ye, A. Moshovos, S. Hauck, and P. Banerjee, “Chimaera: A high-performance

architecture with a tightly-coupled reconfigurable functional unit,” SIGARCH Computer

Architecture News, vol. 28, no. 2, pp. 225–235, 2000.

[45] The Convey HC-2 Architectural Overview, Convey Computer Corporation, 2014.

[46] “Maxeler Technologies: Products,” http://www.maxeler.com/products/, 2014.

http://www.altera.com/devices/processor/nios2/ni2-index.html
http://www.xilinx.com/tools/microblaze.htm
http://www.maxeler.com/products/

140 BIBLIOGRAPHY

[47] C. F. Fang, R. A. Rutenbar, and T. Chen, “Fast, accurate static analysis for fixed-

point finite-precision effects in dsp designs,” in Proceedings of International Conference

Computer-aided Design, 2003, pp. 275–282.

[48] D.-U. Lee, A. Abdul Gaffar, W. Luk, and O. Mencer, “MiniBit: Bit-width optimization

via affine arithmetic,” in Proceedings of Design Automation Conference, 2005, pp. 837–

840.

[49] W. G. Osborne, J. Coutinho, R. C. C. Cheung, W. Luk, and O. Mencer, “Instrumented

multi-stage word-length optimization,” in Proceedings of International Conference Field-

Programmable Technology, 2007, pp. 89–96.

[50] D. Boland and G. A. Constantinides, “Automated precision analysis: A polynomial alge-

braic approach,” in Proceedings of International Symposium Field-Programmable Custom

Computing Machines, 2010, pp. 157–164.

[51] “Vivado high-level synthesis,” http://www.xilinx.com/products/design-tools/vivado/

integration/esl-design/, 2014.

[52] “Impulse accelerated technologies,” http://www.impulseaccelerated.com/, 2014.

[53] “Catapult,” http://calypto.com/en/products/catapult/overview/, 2014.

[54] “DK design suite: Handel-c to FPGA for algorithm design,” http://www.mentor.com/

products/fpga/handel-c/dk-design-suite/, 2014.

[55] “Liquid Metal,” http://researcher.watson.ibm.com/researcher/view group.php?id=122,

2014.

[56] “Bluespec,” http://www.bluespec.com/, 2014.

[57] “Open SPL,” http://www.openspl.org/, 2014.

[58] “MaxCompiler,” https://www.maxeler.com/products/software/maxcompiler/, 2014.

[59] “Altera SDK for OpenCL,” http://www.altera.com/products/software/opencl/

opencl-index.html, 2014.

http://www.xilinx.com/products/design-tools/vivado/integration/esl-design/
http://www.xilinx.com/products/design-tools/vivado/integration/esl-design/
http://www.impulseaccelerated.com/
http://calypto.com/en/products/catapult/overview/
http://www.mentor.com/products/fpga/handel-c/dk-design-suite/
http://www.mentor.com/products/fpga/handel-c/dk-design-suite/
http://researcher.watson.ibm.com/researcher/view_group.php?id=122
http://www.bluespec.com/
http://www.openspl.org/
https://www.maxeler.com/products/software/maxcompiler/
http://www.altera.com/products/software/opencl/opencl-index.html
http://www.altera.com/products/software/opencl/opencl-index.html

BIBLIOGRAPHY 141

[60] “HDL Coder: Generate Verilog and VHDL code for FPGA and ASIC designs,” http://

www.mathworks.co.uk/products/hdl-coder/, 2014.

[61] “DSP Builder,” http://www.altera.com/products/software/products/dsp/dsp-builder.

html, 2014.

[62] “Xilinx System Generator and HDL Coder,” http://www.mathworks.co.uk/fpga-design/

simulink-with-xilinx-system-generator-for-dsp.html, 2014.

[63] “Leg Up,” http://legup.eecg.utoronto.ca/, 2014.

[64] Y. Li, T. Callahan, E. Darnell, R. Harr, U. Kurkure, and J. Stockwood, “Hardware-

software co-design of embedded reconfigurable architectures,” in Proceedings of Design

Automation Conference, 2000, pp. 507–512.

[65] L. Shang and N. Jha, “Hardware-software co-synthesis of low power real-time distributed

embedded systems with dynamically reconfigurable FPGAs,” in Proceedings of Asia and

South Pacific Design Automation Conference, 2002, pp. 345–352.

[66] B. Jeong, S. Yoo, S. Lee, and K. Choi, “Hardware-software cosynthesis for run-time

incrementally reconfigurable FPGAs,” in Proceedings of Asia and South Pacific Design

Automation Conference, 2000, pp. 169–174.

[67] Arria 10 Device Overview, Altera, 2013.

[68] “Model-based design,” http://www.mathworks.co.uk/model-based-design/, 2014.

[69] S. Sharma and W. Chen, “Using model-based design to accelerate FPGA development

for automotive applications,” SAE Technical Paper, Tech. Rep., 2009.

[70] M. Kurek, T. Becker, and W. Luk, “Parametric optimization of reconfigurable designs

using machine learning,” in Proc. Int. Symp. Applied Reconfigurable Computing, 2013,

pp. 134–145.

[71] D. R. Jones, M. Schonlau, and W. J. Welch, “Efficient global optimization of expensive

black-box functions,” J. Global Optimization, vol. 13, no. 4, pp. 455–492, Dec. 1998.

http://www.mathworks.co.uk/products/hdl-coder/
http://www.mathworks.co.uk/products/hdl-coder/
http://www.altera.com/products/software/products/dsp/dsp-builder.html
http://www.altera.com/products/software/products/dsp/dsp-builder.html
http://www.mathworks.co.uk/fpga-design/simulink-with-xilinx-system-generator-for-dsp.html
http://www.mathworks.co.uk/fpga-design/simulink-with-xilinx-system-generator-for-dsp.html
http://legup.eecg.utoronto.ca/
http://www.mathworks.co.uk/model-based-design/

142 BIBLIOGRAPHY

[72] C. Rasmussen, “Gaussian processes in machine learning,” in Advanced Lectures on Ma-

chine Learning, ser. Lecture Notes in Computer Science, O. Bousquet, U. von Luxburg,

and G. Rtsch, Eds. Springer, 2004, vol. 3176, pp. 63–71.

[73] A. Basudhar, C. Dribusch, S. Lacaze, and S. Missoum, “Constrained efficient global opti-

mization with support vector machines,” Structural and Multidisciplinary Optimization,

vol. 46, no. 2, pp. 201–221, 2012.

[74] E. Nurvitadhi, G. Weisz, Y. Wang, S. Hurkat, M. Nguyen, J. C. Hoe, J. F. Mart́ınez, and

C. Guestrin, “GraphGen: An FPGA framework for vertex-centric graph computation,”

in Proceedings on International Symposium on Field-Programmable Custom Computing

Machines, 2014, pp. 25–28.

[75] G. Brebner, “Packets everywhere: The great opportunity for field programmable tech-

nology,” in Proceedings of International Conference on Field-Programmable Technology,

2009, pp. 1–10.

[76] M. Attig and G. Brebner, “400 Gb/s programmable packet parsing on a single FPGA,” in

Proceedings of Symposium on Architectures for Networking and Communications System,

2011, pp. 12–23.

[77] G. C. Buttazzo, Hard Real-Time Computing Systems, 3rd ed. Springer US, 2011.

[78] E. G. Gilbert and C. P. Foo, “Computing the distance between general convex objects in

three-dimensional space,” IEEE Transactions on Robotics and Automation, vol. 6, no. 1,

pp. 53–61, 1990.

[79] N. Chakraborty, J. Peng, S. Akella, and J. E. Mitchell, “Proximity queries between

convex objects: An interior point approach for implicit surfaces,” IEEE Transactions on

Robotics, vol. 24, no. 1, pp. 211–220, 2008.

[80] M. Li, M. Ishii, and R. H. Taylor, “Spatial motion constraints using virtual fixtures

generated by anatomy,” IEEE Transactions on Robotics, vol. 23, no. 1, pp. 4–19, 2007.

BIBLIOGRAPHY 143

[81] D. Constantinescu, S. E. Salcudean, and E. A. Croft, “Haptic rendering of rigid contacts

using impulsive and penalty forces,” IEEE Transactions on Robotics, vol. 21, no. 3, pp.

309–323, 2005.

[82] M. Jakopec, F. Rodriguez y Baena, S. Harris, P. Gomes, J. Cobb, and B. L. Davies, “The

hands-on orthopaedic robot ”acrobot”: Early clinical trials of total knee replacement

surgery,” IEEE Transactions on Robotics and Automation, vol. 19, no. 5, pp. 902–911,

2003.

[83] M. Benallegue, A. Escande, S. Miossec, and A. Kheddar, “Fast C1 proximity queries

using support mapping of sphere-torus-patches bounding volumes,” in Proceedings of

International Conference Robotics and Automation, 2009, pp. 483–488.

[84] X. Zhang and Y. J. Kim, “Interactive collision detection for deformable models using

streaming aabbs,” IEEE Transactions on Visualization and Computer Graphics, vol. 13,

no. 2, pp. 318–329, 2007.

[85] E. Gilbert, D. W. Johnson, and S. S. Keerthi, “A fast procedure for computing the

distance between complex objects in three-dimensional space,” IEEE Journal of Robotics

and Automation, vol. 4, no. 2, pp. 193–203, 1988.

[86] B. Mirtich and B. Mirtich, “V-Clip: Fast and robust polyhedral collision detection,” ACM

Transactions on Graphics, vol. 17, pp. 177–208, 1998.

[87] M. C. Lin and J. F. Canny, “A fast algorithm for incremental distance calculation,” in

Proceedings of International Conference Robotics and Automation, 1991, pp. 1008–1014.

[88] A. Doucet, N. de Freitas, and N. Gordon, Sequential Monte Carlo methods in practice.

Springer, 2001.

[89] M. Happe, E. Lübbers, and M. Platzner, “A self-adaptive heterogeneous multi-core ar-

chitecture for embedded real-time video object tracking,” Journal of Real-Time Image

Processing, pp. 1–16, 2011.

144 BIBLIOGRAPHY

[90] M. Montemerlo, S. Thrun, and W. Whittaker, “Conditional particle filters for simul-

taneous mobile robot localization and people-tracking,” in Proceedings of International

Conference Robotics and Automation, 2002, pp. 695–701.

[91] J. Vermaak, C. Andrieu, A. Doucet, and S. J. Godsill, “Particle methods for Bayesian

modeling and enhancement of speech signals,” IEEE Transactions on Speech and Audio

Processing, vol. 10, no. 3, pp. 173–185, 2002.

[92] N. Kantas, J. M. Maciejowski, and A. Lecchini-Visintini, “Sequential Monte Carlo for

model predictive control,” in Nonlinear Model Predictive Control, ser. Lecture Notes in

Control and Information Sciences, 2009, pp. 263–273.

[93] D. Creal, “A survey of sequential Monte Carlo methods for economics and finance,”

Econometric Reviews, vol. 31, no. 3, pp. 245–296, 2012.

[94] N. J. Gordon, D. J. Salmond, and A. F. M. Smith, “Novel approach to nonlinear/non-

Gaussian Bayesian state estimation,” Proceedings of Radar and Signal Processing, vol.

140, no. 2, pp. 107–113, 1993.

[95] G. Kitagawa, “Monte Carlo filter and smoother for non-gaussian nonlinear state space

models,” Journal of Computational and Graphical Statistics, vol. 5, no. 1, pp. 1–25, 1996.

[96] D. Koller and R. Fratkina, “Using learning for approximation in stochastic processes,” in

Proceedings of International Conference Machine Learning, 1998, pp. 287–295.

[97] D. Fox, “Adapting the sample size in particle filters through KLD-sampling,” Interna-

tional Transactions on Robotics, vol. 22, no. 12, pp. 985–1003, 2003.

[98] S.-H. Park, Y.-J. Kim, and M.-T. Lim, “Novel adaptive particle filter using adjusted

variance and its application,” International Journal of Control, Automation and Systems,

vol. 8, no. 4, pp. 801–807, 2010.

[99] M. Bolic, S. Hong, and P. M. Djuric, “Performance and complexity analysis of adaptive

particle filtering for tracking applications,” in Proceedings of Asilomar Conference Signals,

Systems, and Computers, vol. 1, 2002, pp. 853–857.

BIBLIOGRAPHY 145

[100] Z. Liu, Z. Shi, M. Zhao, and W. Xu, “Mobile robots global localization using adaptive

dynamic clustered particle filters,” in Proceedings of International Conference Intelligent

Robots and Systems, 2007, pp. 1059–1064.

[101] I. Lymperopoulos and J. Lygeros, “Sequential monte carlo methods for multi-aircraft tra-

jectory prediction in air traffic management,” International Journal of Adaptive Control

and Signal Processing, vol. 24, no. 10, pp. 830–849, 2010.

[102] I. Lymperopoulos, “Sequential monte carlo methods in air traffic management,” Ph.D.

dissertation, ETH Zurich, 2010.

[103] J. Ponce, D. Chelberg, and W. B. Mann, “Invariant properties of straight homogeneous

generalized cylinders and their contours,” IEEE Transaction on Pattern Analysis and

Machine Intelligence, vol. 11, no. 9, pp. 951–966, 1989.

[104] F. P. Preparate and M. I. Shamos, Computational Geometry. Springer, 1985.

[105] E. Weisstein, “Point-line distance–3-dimensional,” http://mathworld.wolfram.com/Point-

LineDistance3-Dimensional.html.

[106] Floating-Point Megafunctions User Guide, Altera, 2013.

[107] L. Fousse, G. Hanrot, V. Lefère, P. Péissier, and P. Zimmermann, “MPFR: A multiple-

precision binary floating-point library with correct rounding,” ACM Transactions on

Mathematical Software, vol. 33, no. 2, pp. 13:1–13:15, 2007.

[108] M. Bolic, P. M. Djuric, and S. Hong, “Resampling algorithms and architectures for dis-

tributed particle filters,” IEEE Transactions on Signal Processing, vol. 53, no. 7, pp.

2442–2450, 2005.

[109] L. M. Murray, A. Lee, and P. E. Jacob, “Parallel resampling in the particle filter,”

Tech. Rep., 2014. [Online]. Available: http://arxiv-web3.library.cornell.edu/abs/1301.

4019?context=cs

[110] C.-E. Särndal, B. Swensson, and J. Wretman, Model assisted survey sampling. Springer,

2003.

http://arxiv-web3.library.cornell.edu/abs/1301.4019?context=cs
http://arxiv-web3.library.cornell.edu/abs/1301.4019?context=cs

146 BIBLIOGRAPHY

[111] R. Douc and O. Cappe, “Comparison of resampling schemes for particle filtering,” in

Image and Signal Processing and Analysis, 2005. ISPA 2005. Proceedings of the 4th In-

ternational Symposium on, Sept 2005, pp. 64–69.

[112] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, “Equa-

tion of state calculations by fast computing machines,” The Journal of Chemical Physics,

vol. 21, no. 6, pp. 1087–1092, 1953.

[113] R. M. Neal, “Slice sampling,” Annals of statistics, pp. 705–741, 2003.

[114] L. Miao, J. J. Zhang, C. Chakrabarti, and A. Papandreou-Suppappola, “Algorithm and

parallel implementation of particle filtering and its use in waveform-agile sensing,” Journal

of Signal Processing Systems, vol. 65, no. 2, pp. 211–227, 2011.

[115] D. B. Thomas and W. Luk, “High quality uniform random number generation using LUT

optimised state-transition matrices,” Journal of VLSI Signal Processing Systems, vol. 47,

no. 1, pp. 77–92, 2007.

[116] ——, “An FPGA-specific algorithm for direct generation of multi-variate Gaussian ran-

dom numbers,” in Proceedings of International Conference on Application-specific Sys-

tems Architectures and Processors, 2010, pp. 208–215.

[117] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach. Prentice Hall,

2003.

[118] T. L. Magnanti, “Twenty years of mathematical programming,” in Contributions to Op-

erations Research and Economics: The twentieth anniversary of CORE, B. Cornet and

H. Tulkens, Eds. MIT Press, 1989.

[119] M. Avriel, Nonlinear Programming: Analysis and Methods. Dover Publishing, 2003.

[120] “VxWorks RTOS,” http://www.windriver.com/products/vxworks/, 2014.

[121] “uC/OS-II overview,” http://micrium.com/rtos/ucosii/overview/, 2014.

http://micrium.com/rtos/ucosii/overview/

	Declaration of Originality
	Copyright Declaration
	Abstract
	Acknowledgements
	Dedication
	Publications
	List of Tables
	List of Figures
	Glossary
	Introduction
	Motivation
	Research Challenges and Contributions
	Precision Optimisation of Reconfigurable Data-paths
	Run-time Adaptation of System Configuration
	Design Flow for Domain-specific Reconfigurable Applications

	Thesis Organisation

	Background and Related Work
	Introduction
	Reconfigurable Systems
	Architecture
	Design Flow
	Domain Specific Languages

	Real-time Systems
	Real-time Applications

	Summary

	Precision Optimisation of Data-paths
	Introduction
	Formulation of PQ
	Optimisation for Reconfigurable Hardware
	Transformation of Trigonometric and Search Functions
	Applying Reduced Precision
	Finding the Right Precision

	Reconfigurable System Design
	Streaming Data Structure
	System Architecture
	Performance Model

	Experimental Evaluation
	General Settings
	Parallelism versus Precision
	Ratio of Re-computation versus Precision
	Comparison: CPU, GPU and Reconfigurable System

	Summary

	Run-time Adaptation of System Configuration
	Introduction
	Adaptive SMC Algorithm
	Reconfigurable System Design
	Mapping Adaptive SMC to Reconfigurable System
	FPGA Kernel
	Performance Model for Run-time Reconfiguration

	Optimising Transfer of Particle Stream
	Experimental Results
	System Settings
	Adaptive SMC versus Non-adaptive SMC
	Data Compression
	Performance Comparison of Reconfigurable System, CPU and GPU

	Summary

	Design Flow for Domain-specific Reconfigurable Applications
	Introduction
	SMC Design Flow
	Specifying Application Features
	Computation Engine
	Performance Model

	Optimising SMC Computation Engine
	Compile-time Parameters
	Run-time Parameters
	Parameter Optimisation

	Evaluation
	Design Productivity
	Application 1: Mobile Robot Localisation
	Application 2: Air Traffic Management

	Summary

	Conclusion
	Summary of Achievements
	Future Work
	Proximity Query Formulation
	Adaptive Sequential Monte Carlo Methods

	Bibliography

