
9

Mapping Adaptive Particle Filters to Heterogeneous Reconfigurable
Systems

THOMAS C. P. CHAU and XINYU NIU, Department of Computing, Imperial College London, UK
ALISON EELE and JAN MACIEJOWSKI, Department of Engineering, University of Cambridge, UK
PETER Y. K. CHEUNG, Department of Electrical and Electronic Engineering,
Imperial College London, UK
WAYNE LUK, Department of Computing, Imperial College London, UK

This article presents an approach for mapping real-time applications based on particle filters (PFs) to
heterogeneous reconfigurable systems, which typically consist of multiple FPGAs and CPUs. A method is
proposed to adapt the number of particles dynamically and to utilise runtime reconfigurability of FPGAs for
reduced power and energy consumption. A data compression scheme is employed to reduce communication
overhead between FPGAs and CPUs. A mobile robot localisation and tracking application is developed to
illustrate our approach. Experimental results show that the proposed adaptive PF can reduce up to 99% of
computation time. Using runtime reconfiguration, we achieve a 25% to 34% reduction in idle power. A 1U
system with four FPGAs is up to 169 times faster than a single-core CPU and 41 times faster than a 1U
CPU server with 12 cores. It is also estimated to be 3 times faster than a system with four GPUs.

Categories and Subject Descriptors: C.1.3 [Processor Architectures]: Other Architecture Styles—
Heterogeneous (hybrid) systems; C.3 [Special-Purpose and Application-Based Systems]: Real-time and
embedded systems

General Terms: Algorithms, Design, Performance

Additional Key Words and Phrases: Particle filters, sequential Monte Carlo, reconfigurable systems, FPGAs,
runtime reconfiguration

ACM Reference Format:
Thomas C. P. Chau, Xinyu Niu, Wayne Luk, Alison Eele, Jan Maciejowski, and Peter Y. K. Cheung. 2014.
Mapping adaptive particle filters to heterogeneous reconfigurable systems. ACM Trans. Reconfig. Technol.
Syst. 7, 4, Article 9 (December 2014), 17 pages.
DOI: http://dx.doi.org/10.1145/2629469

1. INTRODUCTION

Particle filter (PF), also known as the sequential Monte Carlo (SMC) method, is a statis-
tical technique for dynamic systems involving nonlinear and non-Gaussian properties.
PF has been studied in various application areas, including object tracking [Happe
et al. 2011], robot localisation [Montemerlo et al. 2002], speech recognition [Vermaak
et al. 2002], and air traffic management [Eele and Maciejowski 2011].

This work is supported in part by the European Union Seventh Framework Programme under grant agree-
ment numbers 257906, 287804, and 318521; UK EPSRC grant numbers EP/L00058X/1, EP/I012036/1, and
EP/G066477/1; Maxeler University Programme, Xilinx, and the Croucher Foundation.
Authors’ addresses: T. C. P. Chau, X. Niu, and W. Luk, Department of Computing, Imperial College London;
email: c.chau10@imperial.ac.uk; A. Eele and J. Maciejowski, Department of Engineering, University of
Cambridge, and P. Y. K. Cheung, Department of Electrical and Electronic Engineering, Imperial College
London.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2014 ACM 1936-7406/2014/12-ART9 $15.00
DOI: http://dx.doi.org/10.1145/2629469

ACM Transactions on Reconfigurable Technology and Systems, Vol. 7, No. 4, Article 9, Publication date: December 2014.

http://dx.doi.org/10.1145/2629469
http://dx.doi.org/10.1145/2629469

9:2 T. C. P. Chau et al.

PF keeps track of a large number of particles, and each contains information about
how a system would evolve. The underlying concept is to approximate a sequence of
states by a collection of particles. Each particle is weighted to reflect the quality of
an approximation. The more complex the problem, the larger the number of particles
needed. One drawback of PF is its long execution times, which limit its practical use.

This article presents an efficient solution to PF. We derive an adaptive algorithm that
adjusts its computation complexity at runtime based on the quality of results. To map
our algorithm to a heterogeneous reconfigurable system (HRS) consisting of multiple
FPGAs and CPUs, we design a pipeline-friendly data structure to make effective use
of the stream computing model. Moreover, we accelerate the algorithm with a data
compression scheme and data control separation.

The key contributions of this work include:

(1) An adaptive PF algorithm that adapts the size of particle set at runtime. The
algorithm is able to reduce computation workload while maintaining the quality of
results.

(2) Mapping the proposed algorithm to a scalable and reconfigurable system by fol-
lowing the stream computing model. A novel data structure is designed to take
advantage of the architecture and alleviate the data transfer bottleneck. The sys-
tem uses the runtime reconfigurability of FPGA to switch between computation
mode and low-power mode.

(3) An implementation of a robot localisation application targeting the proposed sys-
tem. Compared to a nonadaptive and nonreconfigurable implementation, the idle
power of our proposed system is reduced by 25% to 34% and the overall energy
consumption decreases by 17% to 33%. Our system with four FPGAs is up to 169
times faster than a single-core CPU, 41 times faster than a 1U CPU server with 12
cores, and 3 times faster than a modelled four-GPU system.

2. BACKGROUND AND RELATED WORK

This section briefly outlines the PF algorithm. A more detailed description can be
found in Doucet et al. [2001]. PF estimates the state of a system by a sampling-
based approximation of the state probability density function. The state of a system
in timestep t is denoted by Xt. The control and observation are denoted by Ut and Yt,
respectively. Three pieces of information about the system are known a priori:

—p(X0) is the probability of the initial state of the system.
—p(Xt|Xt−1,Ut−1) is the state transition probability of the system’s current state given

a previous state and control information.
—p(Yt|Xt) is the observation model describing the likelihood of observing the measure-

ment at the current state.

PF approximates the desired posterior probability p(Xt|Y1:t) using a set of P par-
ticles {χ (i)

t }P
i=1 with their associated weights {w(i)}P

i=1. X0 and U0 are initialised. This
computation consists of three iterative steps.

(1) Sampling: A new particle set {χ̃ (i)
t }P

i=1 is drawn from the distribution
p(Xt|Xt−1,Ut−1), forming a prediction of the distribution of Xt.

(2) Importance weighting: The likelihood p(Yt|χ̃ (i)
t) of each particle is calculated. The

likelihood indicates whether the current measurement Yt matches the predicted
state {χ̃ (i)

t }P
i=1. Then each particle is assigned a weight w(i) with respect to the

likelihood.
(3) Resampling: Particles with higher weights are replicated, and the number of parti-

cles with lower weights is reduced. With resampling, the particle set has a smaller

ACM Transactions on Reconfigurable Technology and Systems, Vol. 7, No. 4, Article 9, Publication date: December 2014.

Mapping Adaptive Particle Filters to Heterogeneous Reconfigurable Systems 9:3

variance. The particle set is used in the next timestep to predict the posterior
probability subsequently. The distribution of the resulting particles {χ (i)

t }P
i=1 ap-

proximates p(Xt|Y1:t).

The particles in PF are independent of each other; thus, the algorithm can be accel-
erated using specialised hardware with massive parallelism and pipelining. In Happe
et al. [2011], an approach for PF on a hybrid CPU/FPGA platform is developed. Using
a multithreaded programming model, computation is switched between hardware and
software during runtime to react to performance requirements. Resampling algorithms
and architectures for distributed PFs are proposed in Bolic et al. [2005].

Adaptive PFs have been proposed to improve performance or quality of state estima-
tion by controlling the number of particles dynamically. Likelihood-based adaptation
controls the number of particles such that the sum of weights exceeds a prespecified
threshold Koller and Fratkina [1998]. Kullback Leibler distance (KLD) sampling is
proposed in Fox [2003], which offers better-quality results than the likelihood-based
approach. KLD sampling is improved in Park et al. [2010] by adjusting the variance
and gradient of data to generate particles near high-likelihood regions. The preceding
methods introduce data dependencies in the sampling and importance weighting steps,
so they are difficult to be parallelised. An adaptive PF is proposed in Bolic et al. [2002]
that changes the number of particles dynamically based on estimation quality. In Chau
et al. [2012], adaptive PF is extended to a multiprocessor system on FPGA. The number
of particles and active processors change dynamically, but the performance is limited
by soft-core processors. In Liu et al. [2007], a mechanism and a theoretical lower bound
for adapting the sample size of particles are presented. Our previous work Chau et al.
[2013a] presents a hardware-friendly adaptive PF. The algorithm is mapped to an ac-
celerator system that consists of an FPGA and a CPU. However, the system suffers
from a large communication overhead when the particles are transferred between the
FPGA and CPU. Moreover, the scalability of the adaptive PF algorithm to multiple FP-
GAs is not covered. In this work, we extend our previous work to address the problems
mentioned previously.

3. ADAPTIVE PARTICLE FILTER

This section introduces an adaptive PF algorithm that changes the number of particles
at each timestep. The algorithm is inspired by Liu et al. [2007], and we transform it
to a pipeline-friendly version for mapping to the stream computing architecture. This
algorithm is shown in Algorithm 1, which consists of four stages.

3.1. Stage 1: Sampling and Importance Weighting (Line 8 to 9)

At the initial timestep (t = 0), the maximum number of particles are used—that is,
P0 = Pmax. At the subsequent timesteps, the number of particles is denoted as Pt.
Initially, the particle set {χ (i)

t }Pt
i=1 is sampled to {χ̃ (i)

t+1}Pt
i=1. Then, a weight from {wi}Pt

i=1 is
assigned to each particle. As a result, {χ̃ (i)

t+1}Pt
i=1 and {w(i)}Pt

i=1 give an estimation of the
next state.

During sampling and importance weighting, the computation of every particle is
independent of each of the others. The mapping of computation to FPGAs will be
described in Section 4.

3.2. Stage 2: Lower Bound Calculation (Line 10)

This stage derives the smallest number of particles that are needed in the next timestep
to bound the approximation error. The adaptive algorithm seeks a value that is less
than or equal to Pmax. This number, denoted as P̃t+1, is referred to as the lower bound

ACM Transactions on Reconfigurable Technology and Systems, Vol. 7, No. 4, Article 9, Publication date: December 2014.

9:4 T. C. P. Chau et al.

ALGORITHM 1: Adaptive PF algorithm
1: P0 ← Pmax

2: {X(i)
0 }P0

i=1 ←random set of particles
3: t = 1
4: for each step t do
5: r = 0
6: while r ≤ itl repeat do
7: —On FPGAs—
8: Sample a new state {χ̃ (i)

t+1}Pt
i=1 from {χ (i)

t }Pt
i=1

9: Calculate unnormalised importance weights {w̃(i)}Pt
i=1 and accumulate the weights as wsum

10: Calculate the lower bound of sample size P̃t+1 by Equation (1)
11: —On CPUs—
12: Sort {χ̃ (i)

t+1}Pt
i=1 in descending {w̃(i)}Pt

i=1
13: if P̃t+1 < Pt then
14: Pt+1 = max(�P̃t+1�, Pt/2)
15: Set a = 2Pt+1 − Pt and b = Pt+1
16: –Do the following loop in parallel–
17: for i in Pt − Pt+1 do

18: χ̃
(i)
t+1 = χ

(a)
t+1w̃(a)+χ

(b)
t+1w̃(b)

w̃(a)+w̃(b)

19: w̃(i) = w̃(a) + w̃(b)

20: a = a + 1 and b = b − 1
21: end for
22: else if P̃t+1 ≥ Pt then
23: a = 0 and b = 0
24: for i in Pt+1 − Pt do
25: if w̃(a) < w̃(a+1) and a < Pt+1 then
26: a = a + 1
27: end if
28: χ̃

(Pt+b)
t+1 = χ̃

(a)
t+1/2

29: χ̃
(a)
t+1 = χ̃

(a)
t+1/2

30: w̃(Pt+b) = w̃(a)/2
31: w̃(a) = w̃(a)/2
32: b = b + 1
33: end for
34: end if
35: Resample {χ̃ (i)

t+1}Pt
i=1 to {χ (i)

t+1}Pt+1
i=1

36: r = r + 1
37: end while
38: end for

of sampling size. It is calculated by Equations (1) through (4):

P̃t+1 = σ 2 · Pmax

V ar({χ̃ (i)
t+1}Pt

i=1)
(1)

σ 2 =
Pt∑

i=1

(
w(i) · χ̃

(i)
t+1

)2 − 2 · E
({

χ̃
(i)
t+1

}Pt

i=1

) ·
Pt∑

i=1

((
w(i))2 · χ̃

(i)
t+1

)
+ (

E
({

χ̃
(i)
t+1

}Pt

i=1

))2 ·
Pt∑

i=1

(
w(i))2

(2)

V ar
({

χ̃
(i)
t+1

}Pt

i=1

) =
Pt∑

i=1

(
w(i) · (

χ̃
(i)
t+1

)2) − (
E

({
χ̃

(i)
t+1

}Pt

i=1

))2 (3)

ACM Transactions on Reconfigurable Technology and Systems, Vol. 7, No. 4, Article 9, Publication date: December 2014.

Mapping Adaptive Particle Filters to Heterogeneous Reconfigurable Systems 9:5

E
({

χ̃
(i)
t+1

}Pt

i=1

) =
Pt∑

i=1

w(i) · χ̃
(i)
t+1 (4)

As shown in Equations (2) through (4), w(i) is a normalised term. To calculate w(i), a
traditional software-based approach is to iterate through the set of particles twice. The
sum of weights wsum and unnormalised weight w̃(i) are calculated in the first iteration.
Then, w(i) is obtained by dividing w̃(i) by wsum in the second iteration. However, this
method is inefficient for FPGA implementation. Since 2Pt cycles are needed to process
Pt pieces of data, the throughput is reduced to 50%.

To fully utilise deep pipelines targeting an FPGA, we perform function transforma-
tion. Given w(i) = w̃(i)

wsum
, we extract wsum out of Equations (2) through (4). By doing so,

we obtain a transformed form as shown in Equations (5) through (7). wsum and w̃(i) are
computed simultaneously in two separate data paths. At the last clock cycle of the par-
ticle stream, σ 2, V ar({χ̃ (i)

t+1}Pt
i=1) and E({χ̃ (i)

t+1}Pt
i=1) are obtained. The details of the FPGA

kernel design will be explained in Section 4.

σ 2 = 1
(wsum)2 ·

(
Pt∑

i=1

(
w̃(i) · χ̃

(i)
t+1

)2 − 2 · E
({

χ̃
(i)
t+1

}Pt

i=1

) ·
Pt∑

i=1

((
w̃(i))2 · χ̃

(i)
t+1

)
+ (

E
({

χ̃
(i)
t+1

}Pt

i=1

))2 ·
Pt∑

i=1

(w̃(i))2
) (5)

V ar
({

χ̃
(i)
t+1

}Pt

i=1

) = 1
wsum

·
Pt∑

i=1

(
w̃(i) · (

χ̃
(i)
t+1

)2) − (
E

({
χ̃

(i)
t+1

}Pt

i=1

))2 (6)

E
({

χ̃
(i)
t+1

}Pt

i=1

) = 1
wsum

·
Pt∑

i=1

w̃(i) · χ̃
(i)
t+1 (7)

3.3. Stage 3: Particle Set Size Tuning (Lines 12 through 34)

The adaptive approach tunes the particle set size to fit the lower bound Pt+1. This
stage is done on the CPUs because the operations involve nonsequential data access
that cannot be mapped efficiently to FPGAs.

The particles are sorted in descending order according to their weights. As the new
sample size can increase or decrease, there are two cases:

—Case I: Particle set reduction when P̃t+1 < Pt

The lower bound Pt+1 is set to max(�P̃t+1�, Pt/2). Since the new size is smaller than
the old one, some particles are combined to form a smaller particle set. Figure 1
illustrates the idea of particle reduction. The first 2Pt+1 − Pt particles with higher
weights are kept, and the remaining 2(Pt − Pt+1) particles are combined in pairs. As
a result, there are Pt − Pt+1 new particles injected to form the target particle set with
Pt+1 particles. We combine the particles deterministically to keep the statements in
the loop independent of each of the others. As a result, loop unrolling is undertaken
to execute the statements in parallel. The complexity of the loop is in O(Pt−Pt+1

Nparallel
),

where Nparallel indicates the level of parallelism.
—Case II: Particle set expansion when P̃t+1 ≥ Pt

The lower bound Pt+1 is set to P̃t+1. Some particles are taken from the original set
and are inserted to form a larger set. The particles with larger weight would have

ACM Transactions on Reconfigurable Technology and Systems, Vol. 7, No. 4, Article 9, Publication date: December 2014.

9:6 T. C. P. Chau et al.

Fig. 1. Particle set reduction.

Fig. 2. Heterogeneous reconfigurable system (Solid lines: data paths; Dotted lines: control paths).

more descendants. As shown in lines 22 through 34, the process requires picking
the particle with the largest weight at each iteration of particle incision. Since the
particle set is presorted, the complexity of particle set expansion is O(Pt+1 − Pt).

3.4. Stage 4: Resampling (Line 35)

Resampling is performed to pick Pt+1 particles from {χ̃ (i)
t+1}Pt

i=1 to form {χ (i)
t+1}Pt+1

i=1 . The
process has a complexity of O(Pt+1).

4. HETEROGENEOUS RECONFIGURABLE SYSTEM

This section describes the proposed HRS. It is scalable to cope with different FPGA
devices and applications. HRS also takes advantage of the runtime reconfiguration
feature for power and energy reduction.

4.1. Mapping Adaptive PF to HRS

The system design of HRS is shown in Figure 2. A heterogeneous structure is employed
to make use of multiple FPGAs and CPUs. FPGAs and CPUs communicate through

ACM Transactions on Reconfigurable Technology and Systems, Vol. 7, No. 4, Article 9, Publication date: December 2014.

Mapping Adaptive Particle Filters to Heterogeneous Reconfigurable Systems 9:7

Fig. 3. A particle stream.

high-bandwidth buses. FPGAs are responsible for (1) sampling, (2) importance weight-
ing, and (3) lower bound calculation. The data paths on the FPGAs are fully pipelined.
Each FPGA has its own onboard dynamic random-access memory (DRAM) to store the
large amount of particle data. On the other hand, the CPUs gather all of the particles
from FPGAs to perform particle set size tuning and resampling.

4.2. FPGA Kernel Design

Sampling, importance weighting, and lower bound calculation are the most
computation-intensive stages. In each timestep, these three stages are iterated for
itl repeat times. An FPGA kernel is designed to enable acceleration of them.

For sampling and importance weighting, the computation of each particle is inde-
pendent of each of the others. Particles are fed to the FPGAs as a stream shown in
Figure 3. Each block of the particle stream consists of a number of data fields that
store information of a particle. The number of data fields is application dependent. In
every clock cycle, one piece of data is transferred from the onboard memory to an FPGA
data path. Each FPGA data path has a long pipeline where each stage is filled with a
piece of data, and therefore many particles are processed simultaneously. Fixed-point
data representation is customised at each pipeline stage to reduce the resource usage.

Figure 4 shows the components of the FPGA kernel. The kernel is fully pipelined to
achieve one output per clock cycle. It can also be replicated as many times as FPGA
resource allow, and the replications can be split across multiple FPGA boards. The
kernel takes three inputs from the CPUs or onboard DRAM: (1) states, (2) controls,
and (3) seeds. Application-specific parameters are stored in ROMs. Three building
blocks correspond to the sampling, importance weighting and lower bound calculation
stages as described in Section 3.

Meanwhile, the accumulation of wsum introduces a feedback loop. A new weight comes
along every cycle that is more quickly than the floating-point unit to perform addition
of the previous weight. To achieve one result per clock cycle, fixed-point data path is
implemented while ensuring that no overflow or underflow occurs.

4.3. Timing Model for Runtime Reconfiguration

We derive a model to analyse the computation time of HRS. The model helps us to design
a configuration schedule that satisfies the real-time requirement and, if necessary,
amend the application’s specification. The model will be validated by experiments in
Section 6.

The computation time (Tcomp) of HRS consists of three components: (1) data path
time Tdatapath, (2) CPU time TC PU , and (3) data transfer time Ttran. The sampling,
importance weighting, and resampling processes are repeated for itl repeat times in

ACM Transactions on Reconfigurable Technology and Systems, Vol. 7, No. 4, Article 9, Publication date: December 2014.

9:8 T. C. P. Chau et al.

Fig. 4. FPGA kernel design.

every timestep.
Tcomp = itl repeat · (Tdatapath + TC PU + Ttran) (8)

Data path time, Tdatapath, denotes the time spent on the FPGAs. Pt denotes the
number of particles at the current timestep, and fFPGA denotes the clock frequency of
the FPGAs. L is the length of the pipeline. Ndatapath denotes the number of data paths
on one FPGA board. NFPGA is the number of FPGA boards in the system.

Tdatapath =
(

Pt

fFPGA · Ndatapath
+ L − 1

)
1

NFPGA
(9)

CPU time, TC PU , denotes the time spent on the CPUs. The clock frequency and
number of threads of the CPUs are represented by fC PU and Nthread, respectively. par
is an application-specific parameter in the range of [0, 1] representing the ratio of CPU
instructions that are parallelisable, and α is a scaling constant derived empirically.

TCPU = α · Pt

fC PU
·
(

1 − par + par
Nthread

)
(10)

ACM Transactions on Reconfigurable Technology and Systems, Vol. 7, No. 4, Article 9, Publication date: December 2014.

Mapping Adaptive Particle Filters to Heterogeneous Reconfigurable Systems 9:9

Fig. 5. Power consumption of the HRS over time.

Data transfer time, Ttran, denotes the time of moving a particle stream between the
FPGAs and the CPUs. df is the number of data fields of a particle. For example, if a
particle contains the information of coordinates (x, y) and heading h, df = 3. Given that
the constant 1 represents the weight and the constant 2 accounts for the movement
of data in and out of the FPGAs, and bwdata is the bit-width of one data field, the
expression (2 · df + 1) · bwdata is regarded as the size of a particle.

fbus is the clock frequency of the bus connecting the CPUs to FPGAs, and lane is
the number of bus lanes connected to one FPGA. Since many buses, such as the PCI
Express bus, encode data during transfer, the effective data are denoted by e f f (in
PCI Express Gen2, the value is 8/10). In our previous work [Chau et al. 2013a], the
data transfer time has a significant performance impact on HRS. To reduced the data
transfer overhead, we introduce a data compression technique that will be described
in Section 5.

Ttran = (2 · df + 1) · bwdata · Pt

fbus · lane · e f f · NFPGA
(11)

In real-time applications, each timestep is fixed and is known as the real-time bound
Trt. The derived model helps system designers to ensure that the computation time
Tcomp is shorter than Trt. An idle time Tidle is introduced to represent the time gap
between the computation time and real-time bound.

Tidle = Trt − Tcomp (12)

Figure 5(a) illustrates the power consumption of an HRS without runtime reconfigu-
ration. It shows that the FPGAs are still drawing power after the computation finishes.
By exploiting runtime reconfiguration as shown in Figure 5(b), the FPGAs are loaded
with a low-power configuration during the idle period. Such configuration minimises
the amount of active resources and clock frequency. Equation (13) describes the sleep
time when the FPGAs are idle and being loaded with the low-power configuration. If
the sleep time is positive, reconfiguration would be helpful in these situations.

Tsleep = Tidle − Tconf ig (13)

Configuration time, Tconf ig, denotes the time needed to download a configuration
bit-stream to the FPGAs. sizebs represents the size of bitstream in bits. fconf ig is the
configuration clock frequency in Hertz, and bwconf ig is the width of the configuration
port.

Tconf ig = sizebs

fconf ig · bwconf ig
(14)

ACM Transactions on Reconfigurable Technology and Systems, Vol. 7, No. 4, Article 9, Publication date: December 2014.

9:10 T. C. P. Chau et al.

Fig. 6. After the resampling process, some particles are eliminated and the remaining particles are repli-
cated. Data compression is applied so that every particle is stored and transferred once only.

5. OPTIMISING TRANSFER OF PARTICLE STREAM

In Section 4, the data transfer time depends on the number of particles and the bus
bandwidth between the CPUs and FPGAs. It can be a major performance bottleneck
as depicted in Chau et al. [2013a]. Refer to Figure 6(a); each block stores the data of
a particle. When the CPUs finish processing, all data are transferred from the CPUs
to the FPGAs. The data transfer time cannot be reduced by implementing more FPGA
data paths or increasing the FPGAs’ clock frequency because the bottleneck is at the
bus connecting the CPUs and FPGAs.

To improve the data transfer performance, we design a data structure that facili-
tates compression of particles. The idea comes from an observation of the resampling
process—some particles are eliminated, and the vacancies are filled by replicating
noneliminated particles. Replication means that data redundancy exists. For example,
in the original data structure shown in Figure 6(a), particle 1 has three replicates and
particle 2 is eliminated; therefore, particle 1 is stored and transferred for three times.

By using the data structure in Figure 6(b), data redundancy is eliminated by storing
every particle once. Each particle is also transferred once. As a result, the data transfer
time and memory space are reduced.

An HRS often contains DRAM that transfers data in burst to maximise the mem-
ory bandwidth. This works fine with the original data structure where the data are
organised as a sequence from the lower address space to the upper. However, using
the new data structure, the data access pattern is not sequential anymore, and the
address can go back and forth. The DRAM controller needs to be modified so that the
transfer throughput would not be affected by the change of data access pattern. As
illustrated in Figure 6(b), a tag sequence is used to indicate the address of the next
block. For example, after reading the data of particle 1, the burst address is at N.
If the tag is one, the next burst address will point to the address of the next block
at N + 1. Otherwise, the burst address will point to the start address of the current

ACM Transactions on Reconfigurable Technology and Systems, Vol. 7, No. 4, Article 9, Publication date: December 2014.

Mapping Adaptive Particle Filters to Heterogeneous Reconfigurable Systems 9:11

block (which is 1). The data are still addressed in burst, so the performance is not
degraded.

Following is the data transfer time with compression. Rep is the average number of
replication of the particles, and therefore the size of the resampled particle stream is
reduced by a ratio of Rep. The range of Rep is from 1 to Pt, depending on the distribution
of particles after the resampling process. The effect of Rep on data transfer time will
be evaluated in the next section.

Ttran =
(df

Rep + df + 1) · bwdata · Pt

fbus · lane · e f f · NFPGA

(15)

6. EXPERIMENTAL RESULTS

To evaluate the performance of the HRS and make comparison with the other systems,
we implement an application that uses PF for localisation and tracking of a mobile
robot. The application is proposed in Montemerlo et al. [2002] to track location of
moving objects conditioned upon the robot poses over time. Given an a priori learned
map, a robot receives sensor values and moves at regular time intervals. Meanwhile,
M moving objects are tracked by the robot. The states of the robot and objects at time
t are represented by a state vector Xt:

Xt = {Rt, Ht,1, Ht,2, . . . , Ht,M}. (16)

Rt denotes the robot’s pose at time t, and Ht,1, Ht,2, . . . , Ht,M denote the locations of
the M objects at the same time.

The following equation is used to represent the posterior of the robot’s location:

p(Xt|Yt,Ut) = p(Rt|Yt,Ut)
M∏

m=1

p(Ht,m|Rt, Yt,Ut). (17)

Yt is the sensor measurement, and Ut is the control of the robot at time t. The robot
path posterior p(Rt|Yt,Ut) is represented by a set of robot particles. The distribution of
an object’s location p(Ht,m|Rt, Yt,Ut) is represented by a set of object particles, where
each object–particle set is attached to one particular robot particle. In other words, if
there are Pr robot particles representing the posterior over the robot path, there are Pr
object–particle sets and each has Ph particles.

In the application, the area of the map is 12m by 18m. The robot makes a movement
of 0.5m every 5 seconds—that is, Trt = 5. The robot can track eight moving objects at
the same time. A maximum of 8,192 particles are used for robot tracking, and each robot
particle is associated with 1,024 object particles. Therefore, the maximum number of
data path cycles is 8*8192*1024 = 67,108,864. Each particle being streamed into the
FPGAs contains coordinates (x,y) and heading h, which are represented by three single
precision floating-point numbers. For the particle being streamed out of the FPGAs, it
also contains a weight in addition to the coordinates. From Equation (11), the size of a
particle is (2 · 3 + 1) · 32 bits = 224 bits.

6.1. System Settings

HRS: Two reconfigurable accelerator systems from Maxeler Technologies are used.
The system is developed using MaxCompiler, which adopts a stream computing model.

—MaxWorkstation is a microATX form factor system that is equipped with one Xilinx
Virtex-6 XC6VSX475T FPGA. The FPGA has 297,600 lookup tables (LUTs), 595,200
flip-flops (FFs), 2,016 digital signal processors (DSPs), and 1,064 block RAMs. The
FPGA board is connected to an Intel i7-870 CPU (four physical cores, eight threads in
total, clocked at 2.93GHz) via a PCI Express Gen2×8 bus. The maximum bandwidth

ACM Transactions on Reconfigurable Technology and Systems, Vol. 7, No. 4, Article 9, Publication date: December 2014.

9:12 T. C. P. Chau et al.

Table I. Comparison of Adaptive and Nonadaptive PF on HRS (MaxWorkstation with One FPGA;
No Data Compression Is Applied)

Nonadaptive PF Adaptive PF
Model Exp. Model Exp.

Number of Particles 67M 573k
Data path time Tdatapath
(s)

0.336 0.336 0.003 0.003

CPU time TC PU (s) 0.117 0.117 0.001 0.001
Data time Ttran (s) 0.875 1.432 0.007 0.012
Total comp. time Tcomp (s) 1.328 1.885 0.011 0.016
Comp. speedup (higher is
better)

1× 1× 120.7× 117.8×

of the PCI Express bus is 2GB/s according to the specification provided by Maxeler
Technologies.

—MPC-C500 is a 1U server accommodating four FPGA boards, each of which has a
Xilinx Virtex-6 XC6VSX475T FPGA. Each FPGA board is connected to two Intel
Xeon X5650 CPUs (12 physical cores, 24 threads in total, clocked at 2.66GHz) via a
PCI Express Gen2×8 bus.

To support runtime reconfigurability, there are two FPGA configurations:

—Sampling and importance weighting configuration is clocked at 100MHz. Two data
paths are implemented on one FPGA to process particles in parallel. The total re-
source usage is 231,922 LUTs (78%), 338,376 FFs (56%), 1,934 DSPs (96%), and 514
block RAMs (48%).

—Low-power configuration is clocked at 10MHz, with 5,962 LUTs (2%), 6,943 FFs, (1%)
and 12 block RAMs (1%). It uses minimal resources just to maintain communication
between the FPGAs and CPUs.

CPU: The CPU performance results are obtained from a 1U server that hosts two
Intel Xeon X5650 CPUs. Each CPU is clocked at 2.66GHz. The program is written in C
language and optimised by Intel Compiler with SSE4.2 and flag -fast enabled. OpenMP
is used to utilise all of the processor cores.

GPU: An NVIDIA Tesla C2070 GPU is hosted inside a 4U server. It has 448 cores
running at 1.15GHz and has a peak performance by 1,288 GFlops. The program is
written in C for CUDA and optimised to use all available cores. To get more compre-
hensive results for comparison, we also estimate the performance of multiple GPUs.
The estimation is based on the fact that the first three stages (sampling, importance
weighting, lower bound calculation) can be evenly distributed to every GPU and be
computed independently, so the data path and data transfer speedup scales linearly
with the number of GPUs. On the other hand, the last two stages (particle set resiz-
ing and resampling) are computed on the CPU no matter how many GPUs are used;
therefore, the CPU time does not scale with the number of GPUs.

6.2. Adaptive PF Versus Nonadaptive PF

The comparison of adaptive and nonadaptive PF is shown in Table I. Both model esti-
mation and experimental results are listed. Initially, the maximum number of particles
are instantiated for global localisation. For the nonadaptive scheme, the particle set
size does not change. The total computation time estimated and measured are 1.328
seconds and 1.885 seconds, respectively. The difference is due to the difference between
the effective and maximum bandwidth of the PCI Express bus.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 7, No. 4, Article 9, Publication date: December 2014.

Mapping Adaptive Particle Filters to Heterogeneous Reconfigurable Systems 9:13

Fig. 7. Number of particles and components of total computation time versus wall-clock time.

Fig. 8. Localisation error versus wall-clock time.

For the adaptive scheme, the number of particles varies from 573k to 67M, and the
computation time scales linearly with the number of particles. From Table I, both the
model and experiment show 99% reduction in computation time.

Figure 7 shows how the number of particles and the components of total computation
time vary over the wall-clock time (passage of time from the start to the completion of
the application). Although the number of particles is reduced in the proposed design,
the results in Figure 8 show that the localisation error is not adversely affected. The
error is the highest during initial global localisation and is reduced when the robot
moves.

6.3. Data Compression

Figure 9 shows the reduction in data transfer time after applying data compression. A
higher number of replications means a lower data transfer time. The data transfer time
has a lower bound of 0.212 seconds because the data from the FPGAs to the CPUs are
not compressible. Only the particle stream after the resampling process is compressed
when it is transferred from the CPUs to the FPGAs.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 7, No. 4, Article 9, Publication date: December 2014.

9:14 T. C. P. Chau et al.

Fig. 9. Effect on the data transfer time by particle stream compression.

6.4. Performance Comparison of HRS, CPUs, and GPUs

Table II shows the performance comparison of the CPUs, GPUs and HRS.
Data path time: Considering the time spent on the data paths only, HRS is up to 328

times faster than a single-core CPU and 76 times faster than a 12-core CPU system
with 24 threads. In addition, it is 12 times and 3 times faster than one GPU and four
GPUs, respectively.

Data transfer time: The data transfer time of HRS is shown in three rows. The first
row shows the situation when the PCI Express bandwidth is 2GB/s. The second row
shows the performance when PCI Express gen3 x8 (7.88GB/s) is used such that the
bandwidth is comparable with that of the GPU system. When multiple FPGA boards
are used, the data transfer time decreases because multiple PCI Express buses are
utilised simultaneously. The third row shows the performance when data compression
is applied, and it is assumed that each particle is replicated an average of 20 times.

CPU time: The CPU time of HRS is shorter than that of the CPU and GPU systems
because part of the resampling process of object particles is performed on the FPGA
using the Independent Metropolis-Hastings (IMH) resampling algorithm [Miao et al.
2011]. The IMH resampling algorithm is optimised for the deep pipeline architecture
where each particle occupies a single stage of the pipeline. On the CPUs and GPU,
the computation of the particles are shared by threads, and therefore IMH resampling
algorithm is not applicable.

Total computation time: Considering the overall system performance, HRS is up to
169 times faster than a single-core CPU and 41 times faster than a 12-core CPU system.
In addition, it is 9 times faster than one GPU and 3 times faster than four GPUs. Notice
that the CPUs violate the real-time constraint of 5 seconds.

Power and energy consumption: In real-time applications, we are interested in the
energy consumption per timestep. Figure 10 shows the power consumption of HRS,
CPUs, and GPU over a period of 10 seconds (two timesteps). The system power is
measured using a power meter that is connected directly between the power source and
the system. All curves of HRS show peaks when HRS is at the computation mode and
troughs when it is at the low power mode. The power during the configuration period
lies between the two modes. On the HRS with one FPGA, runtime reconfiguration
reduces the idle power consumption by 34% from 145W to 95W. In other words, over a
5-second timestep, the energy consumption is reduced by up to 33%. On the HRS with

ACM Transactions on Reconfigurable Technology and Systems, Vol. 7, No. 4, Article 9, Publication date: December 2014.

Mapping Adaptive Particle Filters to Heterogeneous Reconfigurable Systems 9:15

Table II. Performance Comparison of HRS, CPUs and GPU

CPU(1)a CPU(2)a GPU(1)b GPU(2)b GPU(3)b HRS(1)c HRS(2)d HRS(3)d

Clock freq.
(MHz)

2660 2660 1150 1150 1150 100 100 100

Precision single single single single single single single single

+ custom + custom + custom

Level of
parallelism

1 24 448 896 1792 2+8e 4+24e 8+24e

Data path time
(s)

27.530 6.363 1.000 0.500 0.250 0.336 0.168 0.084

Data path
speedup

1× 4.3× 27.5× 55.1× 110.1× 81.9× 163.9× 327.7×

Data tran. time
(s)

0 0 0.360 0.180 0.090 1.432 f 0.716 f 0.358 f

0.363g 0.182g 0.091g

0.223h 0.111h 0.056h

CPU time (s) 0.420 0.334 0.117 0.117 0.117 0.030 0.025 0.025

Total comp.
time (s)

27.95 6.697 1.477 0.797 0.457 0.589 0.304 0.165

Overall speedup 1× 4.2× 18.9× 35.1× 61.2× 47.5× 91.9× 169.4×
Comp. power
(W)

183 279 287 424 698 145 420 480

Comp. power
eff.

1× 0.7× 0.6× 0.4× 0.3× 1.3× 0.4× 0.4×

Idle power (W) 133 133 208 266 382 95 360 360

Idle power eff. 1× 1× 0.6× 0.5× 0.4× 1.4× 0.4× 0.4×
Energy.(J)i 677/5115 673/1868 1041/1157 1331/1456 1911/2054 489/595 1896/1914 1994/2012

Energy eff. 1× 1×/2.7× 0.7×/4.4× 0.5×/3.5× 0.4×/2.5× 1.4×/8.6× 0.4×/2.7× 0.3×/2.5×
a 2 Intel Xeon X5650 CPUs @2.66 GHz (12 cores supporting 24 threads).
b 1/2/4 NVIDIA Tesla C2070 GPUs and 1 Intel Core i7-950 CPU @3.07 GHz (4 cores supporting 8 threads).
c 1 Xilinx XC6VSX475T FPGA and 1 Intel Core i7-870 CPU @2.93 GHz (4 cores supporting 8 threads).
d 4 Xilinx XC6VSX475T FPGAs and 2 Intel Xeon X5650 CPUs @2.66 GHz (12 cores supporting 24 threads).
e Number of FPGA data paths and number of CPU threads.
f Each FPGA communicates with CPUs via a PCI Express bus with 2 GB/s bandwidth.
g Each FPGA communicates with CPUs via a PCI Express Gen3×8 bus with 7.88 GB/s bandwidth.
h Each FPGA communicates with CPUs via a PCI Express Gen3×8 bus with data compression.
i Cases for 573k and 67M particles in a 5-second interval.

four FPGAs, the idle power consumption is reduced by 25% from 480W to 360W, and
hence the energy consumption is decreased by up to 17%.

The runtime reconfiguration methodology is not limited to the Maxeler systems; it
can be applied to other FPGA platforms as well. The resource management software
of our system (MaxelerOS) simplifies the effort of performing runtime reconfiguration,
and hence we can focus on studying the impact of runtime reconfiguration on energy
saving.

To identify the speed and energy trade-off, we produce a graph as shown in
Figure 11. Each data point represents the computation time versus energy consumption
of a system setting. Among all systems, the HRS with one FPGA has the computation
speed that satisfies the real-time requirement while at the same time consumes the

ACM Transactions on Reconfigurable Technology and Systems, Vol. 7, No. 4, Article 9, Publication date: December 2014.

9:16 T. C. P. Chau et al.

Fig. 10. Power consumption of HRS, CPU, and GPU in one timestep. Notice that the computation time of
the CPU system exceeds the 5-second real-time requirement (the lines of HRS(2) and HRS(3) overlap).

Fig. 11. Runtime versus energy consumption of HRS, CPUs, and GPUs (5-second timestep, 67M particles;
refer to Table II for system settings).

smallest amount of energy. All configurations of CPU system cannot meet the real-
time requirement. HRS(3)—the HRS with four FPGAs—is the fastest among all sys-
tems in comparison; therefore, it is able to handle larger problems and more complex
applications.

7. CONCLUSION

This article presents an approach for accelerating adaptive PF for real-time applica-
tions. The proposed HRS demonstrates a significant reduction in power and energy
consumption compared to CPU and GPU. The adaptive algorithm reduces computation
time while maintaining the quality of results. The approach is scalable to systems with
multiple FPGAs. A data compression technique is used to mitigate the data transfer
overhead between the FPGAs and CPUs.

In the future, HRS will be developed for various PFs that are more compute intensive
and have more stringent real-time requirements than the ones described previously. Air
traffic management [Chau et al. 2013b] and traffic estimation [Mihaylova et al. 2007]

ACM Transactions on Reconfigurable Technology and Systems, Vol. 7, No. 4, Article 9, Publication date: December 2014.

Mapping Adaptive Particle Filters to Heterogeneous Reconfigurable Systems 9:17

are example applications that can substantially benefit from the proposed approach
in meeting current and future requirements. Further work will also be required to
automate the optimisation of designs targeting HRS.

ACKNOWLEDGMENTS

The authors thank Oliver Pell at Maxeler Technologies for comments on the article.

REFERENCES

Miodrag Bolic, Petar M. Djuric, and Sangjin Hong. 2005. Resampling algorithms and architectures for
distributed particle filters. IEEE Transactions on Signal Processing 53, 7, 2442–2450.

Miodrag Bolic, Sangjin Hong, and Petar M. Djuric. 2002. Performance and complexity analysis of adaptive
particle filtering for tracking applications. In Proceedings of the Asilomar Conference on Signals, Systems,
and Computers, Vol. 1. 853–857.

Thomas C. P. Chau, Wayne Luk, Peter Y. K. Cheung, Alison Eele, and Jan Maciejowski. 2012. Adaptive se-
quential Monte Carlo approach for real-time applications. In Proceedings of the International Conference
on Field Programmable Logic and Applications. 527–530.

Thomas C. P. Chau, Xinyu Niu, Alison Eele, Wayne Luk, Peter Y. K. Cheung, and Jan Maciejowski. 2013a.
Heterogeneous reconfigurable system for adaptive particle filters in real-time applications. In Proceed-
ings of the International Symposium on Applied Reconfigurable Computing. 1–12.

Thomas C. P. Chau, James S. Targett, Marlon Wijeyasinghe, Wayne Luk, Peter Y. K. Cheung, Benjamin Cope,
Alison Eele, and Jan M. Maciejowski. 2013b. Accelerating sequential Monte Carlo method for real-time
air traffic Management. In Proceedings of the International Symposium on Highly Efficient Accelerators
and Reconfigurable Technologies.

Arnaud Doucet, Nando de Freitas, and Neil Gordon. 2001. Sequential Monte Carlo methods in practice.
Springer.

Alison Eele and Jan M. Maciejowski. 2011. Comparison of stochastic optimisation methods for control in air
traffic management. In Proceedings of the IFAC World Congress.

Dieter Fox. 2003. Adapting the sample size in particle filters through KLD-sampling. IEEE Transactions on
Robotics 22, 12, 985–1003.

Markus Happe, Enno Lübbers, and Marco Platzner. 2011. A self-adaptive heterogeneous multi-core archi-
tecture for embedded real-time video object tracking. Journal of Real-Time Image Processing 8, 1, 1–16.

Daphne Koller and Raya Fratkina. 1998. Using learning for approximation in stochastic processes. In Pro-
ceedings of the International Conference on Machine Learning. 287–295.

Zhibin Liu, Zongying Shi, Mingguo Zhao, and Wenli Xu. 2007. Mobile robots global localization using adaptive
dynamic clustered particle filters. In Proceedings of the International Conference on Intelligent Robots
and Systems. 1059–1064.

Lifeng Miao, Jun Jason Zhang, Chaitali Chakrabarti, and Antonia Papandreou-Suppappola. 2011. Algorithm
and parallel implementation of particle filtering and its use in waveform-agile sensing. Journal of Signal
Processing Systems 65, 2, 211–227.

Lyudmila Mihaylova, Rene Boel, and Andreas Hegyi. 2007. Freeway traffic estimation within particle filter-
ing framework. Automatica 43, 2, 290–300.

Michael Montemerlo, Sebastian Thrun, and William Whittaker. 2002. Conditional particle filters for simul-
taneous mobile robot localization and people-tracking. In Proceedings of the International Conference on
Robotics and Automation. 695–701.

Sang-Hyuk Park, Young-Joong Kim, and Myo-Taeg Lim. 2010. Novel adaptive particle filter using adjusted
variance and its application. International Journal on Control, Automation, and Systems 8, 4, 801–807.

Jaco Vermaak, Christophe Andrieu, Arnaud Doucet, and Simon John Godsill. 2002. Particle methods for
Bayesian modeling and enhancement of speech signals. IEEE Transactions on Speech and Audio Pro-
cessing 10, 3, 173–185.

Received June 2013; revised February 2014; accepted March 2014

ACM Transactions on Reconfigurable Technology and Systems, Vol. 7, No. 4, Article 9, Publication date: December 2014.

